Trimble Access™
General Survey

Version 2017.22
Revision A
February 2019
Contents

1 **Introduction** ... 12
 Introduction .. 12
 Interacting with other applications 13

2 **General Operations** .. 15
 The General Survey screen .. 15
 Status bar ... 15
 Status line ... 19
 General Survey buttons .. 21
 Shortcuts ... 23
 Controllers ... 25
 Trimble TSC7 controller .. 27
 Trimble tablet ... 27
 Trimble TSC3 controller .. 31
 Trimble CU controller ... 34
 Trimble Geo7X handheld .. 39
 Trimble GeoXR controller ... 43
 Trimble Slate controller ... 46
 Trimble S3 controller .. 48
 Trimble C5 total station ... 50
 Trimble M3 total station ... 52
 Controller keyboard functions ... 54
 Printing from a P4T mobile Bluetooth printer 58
 Entering quadrant bearings .. 59
 Calculator .. 60
 Troubleshooting ... 60

3 **Job Operations** ... 67
 Jobs menu .. 67
 Managing jobs .. 67
 File management .. 69
 Job repair wizard ... 73
 Reviewing and editing job properties 73
 Reviewing data stored in the job .. 74
 Managing data in the Point manager 78
 Coordinate view ... 86
 Station and offset ... 87
 QC graph .. 88
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storing points</td>
<td>89</td>
</tr>
<tr>
<td>Viewing the map</td>
<td>91</td>
</tr>
<tr>
<td>AccessVision</td>
<td>98</td>
</tr>
<tr>
<td>Selecting data to display in the map</td>
<td>98</td>
</tr>
<tr>
<td>Linking files to the current job</td>
<td>100</td>
</tr>
<tr>
<td>Adding data files as map layers</td>
<td>101</td>
</tr>
<tr>
<td>Using the Map for common tasks</td>
<td>106</td>
</tr>
<tr>
<td>Surfaces and volumes</td>
<td>111</td>
</tr>
<tr>
<td>Selecting points using defined criteria</td>
<td>112</td>
</tr>
<tr>
<td>Units</td>
<td>115</td>
</tr>
<tr>
<td>Time/Date</td>
<td>117</td>
</tr>
<tr>
<td>Cogo settings</td>
<td>117</td>
</tr>
<tr>
<td>CAD toolbar</td>
<td>124</td>
</tr>
<tr>
<td>Offset line</td>
<td>128</td>
</tr>
<tr>
<td>Compute intersection</td>
<td>128</td>
</tr>
<tr>
<td>Using a feature library</td>
<td>129</td>
</tr>
<tr>
<td>Additional settings</td>
<td>133</td>
</tr>
<tr>
<td>Media files</td>
<td>135</td>
</tr>
<tr>
<td>Drawing on an image</td>
<td>138</td>
</tr>
<tr>
<td>Using a camera to capture an image</td>
<td>139</td>
</tr>
<tr>
<td>Annotating a snapshot</td>
<td>143</td>
</tr>
<tr>
<td>Linking media files</td>
<td>144</td>
</tr>
<tr>
<td>Copying between jobs</td>
<td>149</td>
</tr>
<tr>
<td>Importing and exporting fixed and custom format files</td>
<td>150</td>
</tr>
<tr>
<td>Sending and receiving ASCII data between external devices</td>
<td>150</td>
</tr>
<tr>
<td>Import and export fixed format files</td>
<td>155</td>
</tr>
<tr>
<td>Export custom format files</td>
<td>158</td>
</tr>
<tr>
<td>Import custom format files</td>
<td>161</td>
</tr>
<tr>
<td>Copying job files to a different location</td>
<td>162</td>
</tr>
<tr>
<td>Copying job files from a different location</td>
<td>163</td>
</tr>
</tbody>
</table>

4 Key In | 164 |
Key in menu	164
Keying in points	164
Keying in lines	165
Keying in arcs	166
Keying in alignments	171
Keying in notes	173
5 Cogo

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cogo menu</td>
<td>175</td>
</tr>
<tr>
<td>Compute inverse</td>
<td>176</td>
</tr>
<tr>
<td>Compute point</td>
<td>176</td>
</tr>
<tr>
<td>Area calculations</td>
<td>183</td>
</tr>
<tr>
<td>Compute volume</td>
<td>184</td>
</tr>
<tr>
<td>Compute distance</td>
<td>186</td>
</tr>
<tr>
<td>Compute azimuth</td>
<td>187</td>
</tr>
<tr>
<td>Compute average</td>
<td>190</td>
</tr>
<tr>
<td>Arc solutions</td>
<td>192</td>
</tr>
<tr>
<td>Triangle solutions</td>
<td>198</td>
</tr>
<tr>
<td>Subdivide a line</td>
<td>199</td>
</tr>
<tr>
<td>Subdivide an arc</td>
<td>201</td>
</tr>
<tr>
<td>Transformations</td>
<td>203</td>
</tr>
<tr>
<td>Traverse</td>
<td>208</td>
</tr>
<tr>
<td>Taped distances</td>
<td>210</td>
</tr>
<tr>
<td>Calculator</td>
<td>211</td>
</tr>
<tr>
<td>Pop-up menu controls</td>
<td>213</td>
</tr>
</tbody>
</table>

6 Survey – General

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring and staking out</td>
<td>214</td>
</tr>
<tr>
<td>Getting connected</td>
<td>215</td>
</tr>
<tr>
<td>Measure codes</td>
<td>215</td>
</tr>
</tbody>
</table>

7 Conventional Survey – Setup

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional survey – Getting started</td>
<td>221</td>
</tr>
<tr>
<td>Configuring conventional survey styles</td>
<td>221</td>
</tr>
<tr>
<td>Conventional instrument configuration</td>
<td>222</td>
</tr>
<tr>
<td>Conventional instrument type</td>
<td>225</td>
</tr>
<tr>
<td>Configure topo point settings</td>
<td>230</td>
</tr>
<tr>
<td>Automatically connecting to a conventional instrument</td>
<td>230</td>
</tr>
<tr>
<td>Preparing for a robotic survey</td>
<td>232</td>
</tr>
<tr>
<td>Station setups – Overview</td>
<td>233</td>
</tr>
<tr>
<td>Station setup</td>
<td>236</td>
</tr>
<tr>
<td>Station setup plus</td>
<td>239</td>
</tr>
<tr>
<td>Measuring rounds in station setup plus or resection</td>
<td>242</td>
</tr>
<tr>
<td>Station elevation</td>
<td>245</td>
</tr>
<tr>
<td>Resection</td>
<td>246</td>
</tr>
<tr>
<td>Refline</td>
<td>250</td>
</tr>
<tr>
<td>Scan station</td>
<td>251</td>
</tr>
</tbody>
</table>
8 Conventional Survey – Measure

Measuring points in a conventional survey .. 264
Measuring topo points in a conventional survey .. 266
Measuring a point in two faces .. 267
Continuous topo – conventional ... 269
Angles and distance ... 271
Averaged observations ... 272
Angle offset, H.Angle offset, and V.Angle offset .. 272
Distance offset .. 273
Measure points on a plane ... 275
Measure 3D axes .. 276
Dual-prism offset ... 277
Circular object ... 278
Measure rounds ... 280
Remote object .. 284
Scanning with an SX10 scanning total station .. 284
Capturing a panorama with an SX10 scanning total station 288
Scanning with a VX or S Series total station .. 289
Capturing a panorama with a VX or S Series total station 294
Surface scanning with a VX or S Series total station .. 295
Check topo and check backsight points ... 298
Fast fix .. 299

9 Survey – Calibration .. 300
Calibration .. 300
Configuring the survey style for a site calibration ... 301
Manual calibration ... 303
Automatic calibration .. 304

10 GNSS Survey – Setup ... 306
GNSS survey – Getting started .. 306
Contents

Configuring GNSS survey styles ... 306
Rover and base options .. 308
Data link options ... 315
Measurement method options .. 315
PP initialization times .. 318
Automatically connecting to a GNSS receiver .. 320
Setting up the equipment for a rover receiver ... 321
Measuring antenna heights .. 321
Antenna.ini file ... 326
Base receiver setup .. 326
Operating several base stations on one radio frequency 332
Wide-area RTK surveys ... 334
RTK on demand .. 335
RTX correction service ... 336
Satellite-based augmentation system (SBAS) .. 339
OmniSTAR differential correction service ... 340
Starting the rover survey .. 343
Initialization .. 345
Starting a real-time survey using a dial-in connection 348
Starting a real-time survey using a mobile Internet connection 349
Redialing the base station .. 350
Ending the rover survey ... 351

11 GNSS Survey – Measure .. 352

Measuring points in a GNSS survey .. 352
Topo point ... 354
Compensated point .. 356
Using a GNSS receiver with a built-in tilt sensor and magnetometer 358
Observed control point .. 361
Rapid point .. 362
FastStatic point .. 364
Continuous topo – GNSS ... 365
Fast fix ... 367
Check point ... 367
Measuring points with a laser rangefinder .. 368

12 Survey – Integrated .. 369

Integrated surveys .. 369
IS rover survey rod .. 372
13 Survey – Imaging

- Trimble V10 imaging rover .. 374
- Equipment setup ... 374
- Height measurement methods ... 377
- Capturing panoramas when measuring a point in a conventional survey ... 382
- Capturing panoramas when measuring a point in a GNSS survey ... 383
- HDR imaging ... 384
- Attaching a panorama to a point .. 385
- V10 photo station coverage areas ... 385
- V10 camera calibration check ... 386
- V10 eBubble options .. 387
- V10 magnetometer calibration .. 388

14 Survey – Stakeout

- Stakeout – Overview ... 390
- Configuring the stakeout display mode .. 391
- Using the graphical display during stakeout 393
- Stakeout options ... 395
- As-staked point details ... 395
- Staking out points .. 399
- Staking out lines .. 406
- Staking out arcs ... 409
- Staking out alignments ... 413
- Staking out to the alignment ... 418
- Staking out a station on an alignment .. 419
- Staking out the side slope from an alignment 420
- Staking out a station at a skew offset from an alignment 422
- Hinge derivation methods .. 423
- Cross section view .. 424
- Specifying construction offsets .. 424
- Specifying a side slope ... 426
- Catch point ... 426
- Catch point staked deltas ... 427
- Digital terrain models (DTMs) ... 428
- Staking to an elevation ... 430

15 Survey Settings

- Settings menu ... 432
- Survey styles .. 433
- Survey types .. 434
Contents

Configuring the survey style to use a laser rangefinder .. 434
Echo sounder instruments ... 437
NMEA outputs .. 440
Duplicate point tolerance ... 442
Feature libraries .. 444
Configuring a radio data link ... 451
Cellular modem – Overview ... 453
Configuring an Internet data link .. 454
Configuring a dial-in data link .. 454
GNSS contacts .. 455
Creating a GNSS contact for a dial-in data link .. 456
Creating a GNSS contact for an Internet data link .. 457
Connecting to the Internet .. 463
Bluetooth .. 467
Wi-Fi .. 473
Compass ... 473
Transferring files between controllers ... 474
Language ... 475
Sound events .. 476
Templates ... 476
Auxiliary GPS .. 477

16 Conventional Survey Instruments ... 478
Conventional Instrument menu ... 478
Navigate to point ... 479
Station setup details ... 480
Electronic level ... 480
EDM settings .. 481
Laser pointer .. 484
Turn to ... 485
Joystick .. 486
Target illumination ... 488
Tracklight ... 488
Instrument settings ... 489
Instrument adjustment ... 493
Survey Basic .. 497
Instrument functions .. 500
Target tracking .. 501
Target controls .. 506
Autolock, FineLock, and Long Range FineLock technology ... 506
Contents

Options softkey ... 563
Projection grids ... 564
Shift grids ... 565

19 Database Search Rules .. 566
 Dynamic database .. 566
 Search rules .. 567
 Exceptions to the search rules ... 569
 Linked files and their search rules ... 570
 Finding the best point in the database .. 570
 Duplicate points and overwriting .. 570
 Assigning control class to a point ... 572

20 Calculations performed by the General Survey software 573
 Transformations applied to GNSS positions ... 573
 Ellipsoid calculations .. 580
 Conventional instrument calculations ... 580
 Standard errors recorded with conventional observations 587
 Area calculations .. 587

Glossary ... 589
Introduction

The General Survey software is a general surveying application for common field survey tasks for optical and GNSS sensors.

For help getting started with the General Survey software, see:
- The General Survey screen
- Controllers
- Troubleshooting

General Survey software menus

From the Trimble Access menu tap General Survey to:

- Manage your jobs
- Key in data
- Carry out COGO functions
- Measure points
- Stakeout points, lines, arcs, alignments and DTMs
- Manage your instruments

Jobs menu

Use this menu to view and manage jobs, and transfer data between the office computer and external devices.

For more information, see Job Operations.

Key in menu

Use the Key in menu to enter data into the General Survey software from the keypad.

Cogo menu

Use the Cogo menu to carry out Coordinate Geometry (Cogo) functions. You can use the menu options to calculate distances, azimuths, and point positions by various methods.

For some calculations, you must define a projection, or select a Scale factor-only coordinate system.
Introduction

You can display ellipsoid, grid, or ground distances by changing the Distances field in the Cogo settings screen.

To perform Cogo calculations in a No projection / No datum coordinate system, set the Distances field to Grid. The General Survey software then performs standard Cartesian computations. If the grid distances you enter are distances on the ground, the new computed grid coordinates will be ground coordinates.

Note - When the Distances field is set to Ground or Ellipsoid, the General Survey software attempts to perform calculations on the ellipsoid. Because there is no relationship established at this point, the system cannot compute coordinates.

Measure menu

Use the Measure menu to measure points, codes, continuous topo points, or perform a site calibration.

For more information on:
- measuring using a conventional instrument, see Measuring points in a conventional survey.
- measuring using a GNSS instrument, see Measuring points in a GNSS survey.

Stakeout menu

Use the Stakeout menu to stake points, lines, arcs, alignments (polylines) or digital terrain models (DTMs).

Instrument menu

This menu provides information about the instrument connected to the Trimble controller, and is used to configure the settings. Available options depend on the instrument that is connected.

For more information, see:
- Conventional Instrument menu
- GNSS Instrument menu

Further information

The contents of this file are installed on the controller with your application.

For information that extends or updates this Help, refer to the Trimble Access Release Notes. Go to http://apps.trimbleaccess.com/help to download the latest PDF file of the Trimble Access Release Notes or help file for each Trimble Access application.

Tip – For links between the Trimble Access application help PDF files to work, download PDF files to the same folder on your computer and do not change any of the file names.

To use this application with other applications, see Interacting with other applications.

Interacting with other applications

You can run more than one application at a time and easily switch between them. For example, you can switch between functions in Roads, Tunnels, Mines, and General Survey.
1 Introduction

To run more than one application at a time, use the Trimble button or Trimble icon in the top left corner of the screen to open the Trimble Access menu. From there, you can run the other application.

To switch between applications:

- Tap the Trimble button in the task bar to access the menu of available applications and services currently running, including the Trimble Access menu. Select the application or service to switch to.
- On the TSC3 controller, a short press of the Trimble button accesses the menu of available applications and services currently running, including the Trimble Access menu. Select the application or service to switch to.
- On the Geo7X/GeoXR controller, tap the Trimble button to access the menu of available applications and services currently running, including the Trimble Access menu and the Windows Start Menu.
- On the Trimble Slate controller, tap the Trimble button to access the menu of available applications and services currently running, including the Trimble Access menu.
- Tap Switch to and then select the required function from the list. If the Switch to button is not on your current screen, press CTRL W to open the Switch to pop-up list.
- Press CTRL TAB. This is the keyboard shortcut to scroll through the current list of Switch to functions.
- Tap Favourites or press CTRL A to select a preconfigured favorite.
- On a controller that has application/function keys, configure the appropriate key for the function you want to run. This method opens an application even if that application is not running.

For more information, see General Survey buttons.
General Operations

The General Survey screen

For an explanation of the buttons and icons on the General Survey screen, see:
 Status bar
 Status line
 General Survey buttons

Status bar

The status bar is on the top right side of the General Survey screen. The equipment that is connected to the controller determines which icons appear on the screen.

The following table describes the status bar icons.

Note - While the icons may look like specific models of a radio or a prism, these are generic icons that may not change if the radio model or prism type is changed.

<table>
<thead>
<tr>
<th>Icon</th>
<th>What it shows</th>
</tr>
</thead>
<tbody>
<tr>
<td>🌍</td>
<td>Controller is connected to and drawing power from an external supply.</td>
</tr>
<tr>
<td>🌍</td>
<td>Controller is connected to an external power supply and is recharging the internal battery.</td>
</tr>
<tr>
<td>🌍100%or50%</td>
<td>Power level is 100% or 50%. If this icon is on the top, it refers to the controller battery. If the icon is below the controller battery, it refers to the power level of an external device. For the Trimble C5 or M3 total station, the upper battery icon refers to the state of the left hand battery and the lower battery icon to the state of the right hand battery.</td>
</tr>
<tr>
<td>🌍35%</td>
<td>This icon is shown when multiple devices or one device with multiple batteries are connected to the controller. The percentage shown and the battery icon at the front of the "stack" indicate the power level of the connected battery that has the lowest power level. Tap the icon to view the Battery status screen which shows information about the power level of the batteries in all connected devices.</td>
</tr>
<tr>
<td>Icon</td>
<td>What it shows</td>
</tr>
<tr>
<td>------</td>
<td>---------------</td>
</tr>
<tr>
<td>![Icon]</td>
<td>A Trimble R10 receiver is in use.</td>
</tr>
<tr>
<td>![Icon]</td>
<td>A Trimble R8s receiver is in use.</td>
</tr>
<tr>
<td>![Icon]</td>
<td>A Trimble V10 imaging rover is in use. When HDR imaging is turned on, HDR is shown to the right of the icon.</td>
</tr>
<tr>
<td>![Icon]</td>
<td>A Trimble R7 receiver is in use.</td>
</tr>
<tr>
<td>![Icon]</td>
<td>A Trimble R9s or NetR9 Geospatial receiver is in use.</td>
</tr>
<tr>
<td>![Icon]</td>
<td>A Trimble R8 receiver is in use.</td>
</tr>
<tr>
<td>![Icon]</td>
<td>A Trimble R2 receiver is in use.</td>
</tr>
<tr>
<td>![Icon]</td>
<td>A 5800 receiver is in use.</td>
</tr>
<tr>
<td>![Icon]</td>
<td>A 5700 GPS receiver is in use.</td>
</tr>
<tr>
<td>![Icon]</td>
<td>A Spectra Precision SP60 receiver is in use.</td>
</tr>
<tr>
<td>![Icon]</td>
<td>A Spectra Precision SP80 receiver is in use.</td>
</tr>
<tr>
<td>![Icon]</td>
<td>An external antenna is in use. The antenna height is shown to the right of the icon.</td>
</tr>
<tr>
<td>![Icon]</td>
<td>A Trimble SX10 scanning total station is in use.</td>
</tr>
<tr>
<td>![Icon]</td>
<td>A Trimble VX Spatial Station or Trimble S Series total station is in use.</td>
</tr>
<tr>
<td>![Icon]</td>
<td>A Trimble C5 total station is in use.</td>
</tr>
<tr>
<td>![Icon]</td>
<td>A Trimble M3 total station is in use.</td>
</tr>
<tr>
<td>![Icon]</td>
<td>A Spectra Precision® FOCUS® 35 or FOCUS 30 total station is in use.</td>
</tr>
<tr>
<td>Icon</td>
<td>What it shows</td>
</tr>
<tr>
<td>------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>A Trimble 5600 total station or a non-Trimble total station is in use.</td>
</tr>
<tr>
<td></td>
<td>If a station setup is completed, the instrument height is shown to the right of the appropriate conventional instrument icon.</td>
</tr>
<tr>
<td></td>
<td>A conventional instrument is receiving an EDM signal back from the prism.</td>
</tr>
<tr>
<td></td>
<td>A conventional instrument is locked on to the target (prism).</td>
</tr>
<tr>
<td></td>
<td>A conventional instrument is locked and measuring to the target (prism).</td>
</tr>
<tr>
<td></td>
<td>A conventional instrument in Fast Standard (FSTD) mode averages the angles while a fast standard measurement is taken.</td>
</tr>
<tr>
<td></td>
<td>A conventional instrument in Standard (STD) mode averages the angles while a standard distance measurement is taken.</td>
</tr>
<tr>
<td></td>
<td>A conventional instrument in Tracking (TRK) mode constantly measures distances and updates in the status line. (TRK is commonly used in stakeout and continuous topo.)</td>
</tr>
<tr>
<td></td>
<td>The laser pointer is on (DR mode only).</td>
</tr>
<tr>
<td></td>
<td>The High Power laser pointer is on.</td>
</tr>
<tr>
<td></td>
<td>The radio signals from the robotic instrument are no longer being received.</td>
</tr>
<tr>
<td></td>
<td>The compensator is disabled.</td>
</tr>
<tr>
<td></td>
<td>Auto-connect is disabled. Tap the icon once to restart Auto connect. Tap the icon again to view the Auto connect options screen.</td>
</tr>
<tr>
<td></td>
<td>The prism is locked by the robotic instrument. The prism constant (in millimeters) and target height are shown to the right of the icon. "1" indicates that target 1 is in use.</td>
</tr>
<tr>
<td></td>
<td>The target icon changes to a DR icon to show that the instrument is in Direct Reflex mode.</td>
</tr>
<tr>
<td></td>
<td>The target icon rotates to show that the conventional instrument has Autolock enabled but is not currently locked on to a target.</td>
</tr>
</tbody>
</table>
General Operations

<table>
<thead>
<tr>
<th>Icon</th>
<th>What it shows</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FineLock is enabled.</td>
</tr>
<tr>
<td></td>
<td>Long Range FineLock is enabled</td>
</tr>
<tr>
<td></td>
<td>GPS Search is enabled.</td>
</tr>
<tr>
<td></td>
<td>Interrupted Target Measurement is enabled</td>
</tr>
<tr>
<td></td>
<td>A static point is being measured.</td>
</tr>
<tr>
<td></td>
<td>Radio signals are being received.</td>
</tr>
<tr>
<td></td>
<td>Radio signals are no longer being received.</td>
</tr>
<tr>
<td></td>
<td>Cellular modem signals are being received. Cellular modem has hung up, or has stopped receiving corrections.</td>
</tr>
<tr>
<td></td>
<td>Radio signals are being received. xFill® is ready to provide RTK if required.</td>
</tr>
<tr>
<td></td>
<td>Radio signals are no longer being received. xFill is enabling RTK to continue.</td>
</tr>
<tr>
<td></td>
<td>SBAS/OmniSTAR® signals are being received.</td>
</tr>
<tr>
<td></td>
<td>RTX satellite signals are being received and an RTX position is being generated.</td>
</tr>
<tr>
<td></td>
<td>Data is being received from the RTX satellite but an RTX position cannot be generated yet.</td>
</tr>
<tr>
<td></td>
<td>An RTX survey is running but data is not being received from the RTX satellite.</td>
</tr>
<tr>
<td></td>
<td>Continuous points are being measured.</td>
</tr>
<tr>
<td></td>
<td>If no survey is running, the number of satellites being tracked is shown to the right of the icon. If a survey is running, the number of satellites in the solution is shown to the right of the icon.</td>
</tr>
<tr>
<td></td>
<td>A real-time survey is running and base data from a network connection is being</td>
</tr>
</tbody>
</table>
General Operations

<table>
<thead>
<tr>
<th>Icon</th>
<th>What it shows</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Real-time base data streaming from a network connection is paused. Base data streaming automatically restarts when required.</td>
</tr>
<tr>
<td></td>
<td>A real-time survey is running and base data from a network connection is being received but the solution from the receiver is not yet using that base data.</td>
</tr>
<tr>
<td></td>
<td>A real-time survey with base data from a network connection is stopped. The base station network connection is maintained, but the real-time base data will not be streamed to the rover.</td>
</tr>
<tr>
<td></td>
<td>A real-time survey is running but base data from a network connection cannot be received.</td>
</tr>
</tbody>
</table>

In a conventional survey, you can tap the status bar icons to access related screens as described below:

<table>
<thead>
<tr>
<th>Icon</th>
<th>Related screen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Instrument functions</td>
</tr>
<tr>
<td></td>
<td>Tap and hold to access the instrument settings</td>
</tr>
<tr>
<td></td>
<td>Target details</td>
</tr>
<tr>
<td></td>
<td>You can then change targets and edit the target height and prism constant</td>
</tr>
</tbody>
</table>

In a GNSS survey, you can tap the status bar icons to access related screens as described below.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Related screen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Receiver status</td>
</tr>
<tr>
<td></td>
<td>Sky plot</td>
</tr>
<tr>
<td></td>
<td>GNSS functions</td>
</tr>
<tr>
<td></td>
<td>Tap and hold to access the receiver settings</td>
</tr>
<tr>
<td></td>
<td>Antenna details</td>
</tr>
<tr>
<td></td>
<td>You can then edit the antenna measurement method and antenna height</td>
</tr>
</tbody>
</table>

Status line

The status line is displayed on the bottom of the screen. It displays a message when an event or action occurs, and when the General Survey software cannot start or continue with its present function.
When the controller is connected to a receiver, the status line displays the current survey mode. The following table explains these modes.

<table>
<thead>
<tr>
<th>Survey mode</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Survey</td>
<td>The receiver is connected but a survey has not been started.</td>
</tr>
<tr>
<td>RTX</td>
<td>The current survey type is RTX.</td>
</tr>
<tr>
<td>RTK:Fixed</td>
<td>The current RTK survey is initialized, and the solution type is L1 fixed-centimeter-level.</td>
</tr>
<tr>
<td>RTK:Float</td>
<td>The current RTK survey is not initialized, and the solution type is L1 float.</td>
</tr>
<tr>
<td>RTK:Check</td>
<td>The current RTK survey is verifying the initialization.</td>
</tr>
<tr>
<td>RTK:Auton</td>
<td>The radio link is down in the current RTK survey, and the solution is an autonomous position.</td>
</tr>
<tr>
<td>RTK:SBAS</td>
<td>The radio link is down in the current RTK survey, and the solution is an SBAS position</td>
</tr>
<tr>
<td>OmniSTAR VBS</td>
<td>The current survey type is OmniSTAR VBS (differentially corrected)</td>
</tr>
<tr>
<td>OmniSTAR HP</td>
<td>The current survey type is OmniSTAR HP (high-precision)</td>
</tr>
<tr>
<td>xFill</td>
<td>Radio signals are no longer being received. xFill or xFill-RTX is enabling RTK to continue.</td>
</tr>
<tr>
<td>FastStatic</td>
<td>The current survey type is FastStatic.</td>
</tr>
<tr>
<td>PPK:Initialized</td>
<td>The current postprocessed kinematic survey is initialized. When postprocessed, it should yield a centimeter-level solution.</td>
</tr>
<tr>
<td>PPK:Not initialized</td>
<td>The current postprocessed kinematic survey is not initialized. When postprocessed, it may not yield a centimeter-level solution.</td>
</tr>
<tr>
<td>Infill:Initialized</td>
<td>The current postprocessed kinematic infill survey is initialized. When postprocessed, it should yield a centimeter-level solution.</td>
</tr>
<tr>
<td>Infill:Not initialized</td>
<td>The current postprocessed kinematic infill survey is not initialized. When postprocessed, it may not yield a centimeter-level solution.</td>
</tr>
<tr>
<td>Infill</td>
<td>The current survey type is differential, and you are doing an infill session.</td>
</tr>
<tr>
<td>SBAS</td>
<td>The current survey type is differential, and using signals from an SBAS.</td>
</tr>
</tbody>
</table>

The following table describes the status line icons for a GNSS survey when using a receiver equipped with HD-GNSS technology.

<table>
<thead>
<tr>
<th>Icon</th>
<th>What it shows</th>
</tr>
</thead>
<tbody>
<tr>
<td>✅</td>
<td>The precision tolerances have been met.</td>
</tr>
<tr>
<td>✗</td>
<td>The precision tolerances have not been met.</td>
</tr>
</tbody>
</table>
General Survey buttons

Status bar buttons

- **Enter**: Tapping the *Enter* button on the controller is the same as tapping the *Enter* key on the controller keypad. The actions of the *Enter* button depend on the current screen. In some screens, the caption on the button changes to describe the action for the screen. For example, the *Enter* button changes to the *Measure* button when you are in the *Measure points* screen.
- **Map**: Tap *Map* to display a map of the current job.
- **Menu**: Tap *Menu* to return to the main menu.
- **Favorites**: Tap *Favorites* to access a list of commonly used screens. See the *Favorites* menu below.
- **Switch to**: Tap this button to switch between active windows (screens).

Note - The up arrow softkey appears if there are more than four softkeys associated with a screen. Tap the arrow or press the **Shift** key to see the other softkeys.

Tip - To highlight a field without selecting it, tap and hold briefly with the stylus.

Favorites menu

The *Favorites* menu provides quick access to commonly used screens and to various commands when connected to a conventional instrument or GNSS receiver. Access a screen or command from the *Favorites* list, or use the *Switch to* button to access previously viewed screens.

To access a screen or command from the *Favorites* list, tap the *Favorites* button and then select the screen you want.

To add a screen to the Favorites list, view it and select *Favorites / Add to favorites*.

To add a command to the Favorites list:

1. Tap *Favorites / Customize / Add a command to Favorites menu*.
2. Tap the command you want to add.

To remove a command or form:

1. Tap *Favorites / Customize / Remove command from Favorites menu*.
2. Tap the item you want to remove.

Customizing controller keys

The App keys on controllers can be configured from the operating system on the controller, primarily to perform hardware key functions, or within the Trimble Access software, to perform software functions.

To configure the keys to perform hardware key functions, tap *Start / Settings / Personal / Buttons* and then set the *Left softkey* or *Right softkey* to the appropriate function. Then, in General Survey,
Customizing the App keys on a Slate/GeoXR/TSC3 controller

The Left App key and the Right App key provide quick access to commonly used screens or commands. To customize the App keys:

1. Run the General Survey software.
2. To assign a form to an App key, browse to that form.
 - For a TSC3 controller - from the main menu, tap Favorites / Customize / Assign a command to App Button 1 or Assign a command to App Button 2.
 - For a Slate/GeoXR controller - from the main menu, tap Switch to / Customize / Assign a command to App Button 1 or Assign a command to App Button 2.
3. Do one of the following:
 - If you have browsed to a specific form, select the form name at the top of the list.
 - To return to the default settings, select None.
 - Select an instrument or GNSS command. Several are available by default.

Tip - To assign a new command to an App key on a TSC3 controller press CTRL + App key to access the selection menu.

Customizing the App keys on a Geo7X controller

The Left App key and the Right App key provide quick access to commonly used screens or commands. To customize the App keys:

1. Run the General Survey software.
2. To assign a form to an App key, browse to that form.
3. Tap Start / Settings / Personal / Buttons.
4. To specify the action for the key, do one of the following:
 - Tap the Program Buttons tab.
 - Tap a button in the list to select it.
 - From the Assign a program drop-down list, select the action you want to occur when you press the App key.
5. Tap OK.

Customizing the function keys on a Trimble tablet

Function keys provide quick access to commonly used screens or commands. To customize the function keys:

1. Run the General Survey software.
2. If you want to assign a form to a key, browse to that form and from the main menu, tap Favorites / Customize and then select the appropriate Assign a command option.
3. Do one of the following:
If you have browsed to a specific form, select the form name at the top of the list.
To return to the default settings, select None.
Select an instrument or GNSS command. Several are available by default.

Softkeys

Softkeys are displayed on the bottom line of the General Survey screen as on-screen buttons. They relate to particular screens and change when the screens change.

To access the softkeys using the keyboard:
- On a Trimble TSC3 controller and Trimble tablet, press Ctrl and then press 1, 2, 3, or 4 for softkeys F1, F2, F3, or F4 respectively. To see the second row of softkeys, press Shift.
- On a Trimble CU, Trimble M3 total station, and Trimble S3 total station, press Ctrl and then 1, 2, 3, or 4 for softkeys F1, F2, F3, or F4 respectively. To display the second row of softkeys, press Ctrl and then 5.

Shortcuts

General Survey shortcuts

<table>
<thead>
<tr>
<th>To...</th>
<th>Do the following</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select an underlined menu item</td>
<td>Press the key corresponding to the underlined menu item</td>
</tr>
<tr>
<td>Select a job or folder</td>
<td>Press the first character of the job or folder name. If multiple items start with</td>
</tr>
<tr>
<td>Display the map</td>
<td>CTRL M from anywhere</td>
</tr>
<tr>
<td>Display the menu</td>
<td>CTRL E from anywhere</td>
</tr>
<tr>
<td>Display Favorites</td>
<td>CTRL A from anywhere</td>
</tr>
<tr>
<td>Switch to</td>
<td>CTRL W from anywhere</td>
</tr>
<tr>
<td>Scroll through the list of Switch to</td>
<td>CTRL TAB</td>
</tr>
<tr>
<td>functions</td>
<td></td>
</tr>
<tr>
<td>Key in Notes</td>
<td>CTRL N</td>
</tr>
<tr>
<td>Measure Check shot</td>
<td>CTRL K</td>
</tr>
<tr>
<td>Show or Hide eBubble</td>
<td>CTRL L</td>
</tr>
<tr>
<td>Switch between a GNSS and a</td>
<td>Tap in the status line area at the bottom of the screen</td>
</tr>
<tr>
<td>To...</td>
<td>Do the following</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>conventional survey</td>
<td>Tap the column heading. Tap the column heading again to reverse the sort order.</td>
</tr>
<tr>
<td></td>
<td>Note - Not all column headings support this.</td>
</tr>
<tr>
<td>Sort columns</td>
<td>Tap the column heading. Tap the column heading again to reverse the sort order.</td>
</tr>
<tr>
<td></td>
<td>Note - Not all column headings support this.</td>
</tr>
<tr>
<td>Sort columns</td>
<td>Tap the column heading. Tap the column heading again to reverse the sort order.</td>
</tr>
<tr>
<td></td>
<td>Note - Not all column headings support this.</td>
</tr>
<tr>
<td>Softkeys F1, F2, F3, F4</td>
<td>CTRL 1, 2, 3, 4 respectively</td>
</tr>
<tr>
<td>Access the second row of softkeys</td>
<td>SHIFT</td>
</tr>
<tr>
<td></td>
<td>Note - On a TCU, press CTRL + S</td>
</tr>
<tr>
<td>Select a check box or button</td>
<td>SPACE</td>
</tr>
<tr>
<td>Move between fields</td>
<td>Up arrow, Down arrow, TAB, Back TAB</td>
</tr>
<tr>
<td>Open a dropdown list</td>
<td>Right arrow</td>
</tr>
<tr>
<td>Select items in dropdown lists</td>
<td>Press the first character of the list item. If multiple items start with the same character, press the first character again to move through the list.</td>
</tr>
<tr>
<td>Widescreen on/off</td>
<td>. (full stop or period)</td>
</tr>
<tr>
<td>Delete jobs</td>
<td>On a TSC3: FN + DEL</td>
</tr>
<tr>
<td></td>
<td>On a TCU / tablet: CTRL + DEL</td>
</tr>
<tr>
<td>To select multiple fields in</td>
<td>Press and hold CTRL and then tap the fields, or use SHIFT and then tap the</td>
</tr>
<tr>
<td>Point manager</td>
<td>fields at the start and end of your selection.</td>
</tr>
<tr>
<td>Navigate to a particular group of codes</td>
<td>Press A to Z to move to group pages 1 to 26. Key A opens group 1, Key B opens group 2... and key Z opens group 26.</td>
</tr>
<tr>
<td></td>
<td>Note - This method is not available if the Code button is enabled.</td>
</tr>
<tr>
<td>Initiate a measurement using</td>
<td>Press the numeric key on the controller keyboard corresponding to the button for the code.</td>
</tr>
<tr>
<td>measure codes</td>
<td>When the buttons are set to a 3 x 3 layout, keys 7, 8, 9, activate the top row of buttons, keys 4, 5, 6 activate the middle row of buttons, keys 1, 2, 3 activate the bottom row of buttons.</td>
</tr>
<tr>
<td>Compute a distance between two points</td>
<td>Enter the point names in the distance field, separated by a hyphen. For example, to compute the distance between points 2 and 3, enter "2-3".</td>
</tr>
<tr>
<td></td>
<td>Note - This method works with most alphanumeric point names, but it does not support point names that already contain a hyphen.</td>
</tr>
<tr>
<td>Compute an azimuth from two</td>
<td>Enter the point names in the Azimuth field, separated by a hyphen. For example, to compute the azimuth from point 2 to point 3, enter "2-3".</td>
</tr>
</tbody>
</table>
To... | Do the following
---|---
points | *Note* - *This method works with most alphanumeric point names, but it does not support point names that already contain a hyphen.*
Copy | CTRL C
Paste | CTRL V
Open the Functions menu | Press and hold the Trimble key (if available) on the controller keyboard.
Display the target/prism selection panel | CTRL P

Controller-specific shortcuts

<table>
<thead>
<tr>
<th>Controller</th>
<th>To...</th>
<th>Do the following</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSC3/TCU</td>
<td>Open/Close Keyboard panel</td>
<td>CTRL 7</td>
</tr>
<tr>
<td>TCU/S3/M3</td>
<td>Open Control Panel</td>
<td>CTRL, ESC [Settings / Control Panel]</td>
</tr>
<tr>
<td>TCU/S3/M3</td>
<td>Disable/Enable touch screen</td>
<td>CTRL + Trimble key</td>
</tr>
<tr>
<td>All</td>
<td>Display Start menu</td>
<td>CTRL + ESC</td>
</tr>
<tr>
<td>TSC3</td>
<td>Soft reset/Warm boot</td>
<td>Hold Power key for about 10 seconds and then release</td>
</tr>
<tr>
<td>TCU 1 and 2</td>
<td>Soft reset/Warm boot</td>
<td>Hold CTRL + 1 and then press and release 9</td>
</tr>
<tr>
<td>TCU 3</td>
<td>Soft reset/Warm boot</td>
<td>Hold Power key and then select Options / Reset</td>
</tr>
<tr>
<td>Slate/Geo7X/GeoXR</td>
<td>Soft reset/Warm boot</td>
<td>Hold Power key and then select Reset</td>
</tr>
</tbody>
</table>

Controllers

The functionality supported in each controller is as follows:

<table>
<thead>
<tr>
<th>Controller</th>
<th>BlueTooth</th>
<th>Wi-Fi</th>
<th>Internal modem</th>
<th>Internal GPS</th>
<th>Internal Camera</th>
<th>Internal Compass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trimble TSC7</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>-</td>
</tr>
<tr>
<td>Trimble tablet</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>-</td>
</tr>
<tr>
<td>Trimble TSC3</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>
General Operations

<table>
<thead>
<tr>
<th>Controller</th>
<th>BlueTooth</th>
<th>Wi-Fi</th>
<th>Internal modem</th>
<th>Internal GPS</th>
<th>Internal Camera</th>
<th>Internal Compass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trimble Slate controller</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Trimble Geo7X</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>-</td>
</tr>
<tr>
<td>Trimble GeoXR</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>-</td>
</tr>
<tr>
<td>Trimble CU</td>
<td>*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Note - Reference to a Trimble CU refers to all versions of the Trimble CU (Model 3) controller. When required, the Trimble CU (Model 3) controller is specifically mentioned. A Trimble CU (Model 3) controller can be identified by the label on the back.

File storage on Trimble controllers

Trimble controllers have similar RAM and flash storage. In all controllers, the RAM storage is volatile and is shared between storage memory and program memory.

- Storage memory is required for such things as the operating system, and installing programs.
- Program memory is required to run programs. When program memory is low, programs may run slowly, become unresponsive, or even crash.

Flash memory is permanent, so data is not lost if the controller loses power or after a hard reset. However, as with a computer hard disk, this storage may occasionally fail.

Power indicators

The remaining battery power is displayed as a battery symbol in the status bar.

The symbol on the top represents the power remaining in the Trimble controller battery, or when using a Trimble CU the power remaining in the Trimble Robotic or GNSS holder battery.

For the Trimble C5 or M3 total station, the symbol on the top represents the power remaining in the left hand battery on the instrument and the lower battery symbol represents the power remaining in the instrument’s right hand battery.

The symbol below the top battery symbol represents the remaining power in an external power supply, such as from a GNSS receiver or conventional instrument. (This symbol only appears when an external power supply is connected.)

The level of shading in the symbol reduces as the power reduces.

Controller-specific information

Use the links below to find out specific information for your controller type:
- Trimble TSC7 controller
- Trimble tablet
- Trimble TSC3 controller
Trimble TSC7 controller

The Trimble TSC7 controller is the 2018 addition to the Trimble family of rugged survey field controllers, and combines the best features of the most popular models. Like the Trimble T10 tablet, the TSC7 provides the power of the Windows 10 operating system, with a large easy to see screen but packaged in a form factor similar to the popular TSC3.

Trimble Access supports the 12 function keys on the TSC7 controller keypad and a long press of the ≡ key can be used to quickly access instrument or GNSS functions.

Note – *Because the TSC7 is running the Windows 10 operating system, when referring to the Trimble Access Help for instructions for the TSC7 please refer to the sections and instructions for the Trimble Tablet.*

Tip – Modern computers like the Trimble T10 and TSC7 controllers use network adapters for cellular communication. Unlike modems, network adapters do not support "dial-in" connections. To use a "dial-in" data link for real time corrections you must use an external cellular phone or modem, or use the modem in your receiver if it has one.

Trimble tablet

Supported Trimble tablet controllers are:
- Trimble T10 tablet
- Trimble tablet (Yuma)

Trimble tablets have a large high-resolution screen. The key features common to all Trimble tablets are described below.

Internal GPS

The internal GPS can be used to navigate to a point, to store a position, and for a GPS search. GPS search is automatically enabled but a connected GNSS receiver is always used in preference to the internal GPS.

To use the internal GPS on a tablet running the Windows 10 operating system, make sure the Location service is On. From the Windows desktop, swipe in from the right to access the Action center. Ensure Location is colored blue (on). If it is off, tap Location to turn it on.
Internal camera
Use the internal forward facing camera to capture and attach an image to a point.

2.4 GHz USB radio
The tablet may be equipped with a 2.4 GHz USB radio for communicating with a robotic instrument during a conventional survey. Alternatively you can connect an external radio via cable to a USB port on the tablet.

To set up the radio, establish an Internet connection with the Trimble tablet and then connect the radio to the tablet using the USB cable supplied. The drivers are then installed automatically. To install the drivers manually, from the Windows Start menu, tap [Trimble Access Drivers] and run USBRadioDriver.exe.

Trimble TabletSync
The TabletSync utility can be installed on a Trimble tablet along with the Trimble Access software, and used to easily transfer and synchronize data files between the Trimble tablet and a host computer using a local area network (wired or wireless).

Note - The Trimble tablet does not support the Monitoring application.

Managing anti-virus software and Windows updates on the Trimble tablet
- Trimble recommends installing anti-virus software on the Trimble tablet, just like you do on all other computers
- Windows updates should be applied before using the Trimble Access Installation Manager to install Trimble Access software updates.
- Trimble recommends that Windows updates and anti-virus updates are not scheduled at times when you are working in the field.

Connections to the office
The Trimble tablet is a Windows PC. It cannot use Windows Mobile® Device Center to connect to the office PC. Alternative file transfer options include:

- Using the Trimble Connected Community directly on the Trimble tablet in the same way as on an office PC.
- Using the Trimble Connected Community Explorer utility to upload/download files between the Trimble tablet and the Trimble Connected Community. It makes an organizations file and folder structure in the Trimble Connected Community available in [My Computer] and Windows Explorer areas of the Trimble tablet.
- Using AccessSync, which allows you to send data back and forth to your Trimble Connected Community organization. You are entitled to install and run this service if you have a valid software maintenance agreement or if you have purchased Advanced Trimble Access services. For more information browse to http://mytrimbleaccess.com
- Using the Trimble TabletSync utility, which can be installed on a Trimble tablet along with the Trimble Access software, allows you to easily transfer and synchronize data files between the Trimble tablet and a host computer using a local area network (wired or wireless).
Adding the Trimble tablet to a network

- Network/Internet connections:
 - Wi-Fi
 - Ethernet cable using a USB adaptor or a docking station
 - Cellular modem connected by Bluetooth, USB, or express card
 - Using a USB memory stick

Note - Some third party devices may require you to use their own proprietary software to establish an Internet connection outside the Trimble Access software. The Trimble Access software will use an existing Internet connection if this is available.

Connecting or transferring data to other devices

- Bluetooth
- USB cable

 Note - To establish a connection to an Trimble R10 receiver, you must first install a suitable driver. To do this, from the Windows Start menu, tap Trimble Access Drivers and then run Win7_USB_Installer.exe.
- USB stick
- Wireless ad-hoc (computer-to-computer) network

Enabling Wi-Fi on the tablet

If the tablet is running the Windows 10 operating system:
1. From the Windows Start menu, tap [Settings / Network and Internet].
2. Select Wi-Fi and make sure it is turned on.
3. Select the Wi-Fi network to connect to. For more information, refer to the Windows Help.

If the tablet is running an earlier version of Windows:
1. From the Windows Start menu, tap [Control Panel / Tablet PC Settings].
2. Tap [Network and Sharing Center].
3. From the options on the left, tap [Change adapter settings].
4. Tap and hold the [Wireless Network Connection] icon and then select [Enable].
5. To create a Wi-Fi connection, select [Set up a new connection or network]. For more information, refer to the Windows Help.

Trimble tablet operation

Trimble keyboard

The Trimble keyboard is installed with Trimble Access on a Trimble tablet.

Trimble Access and the tablet operating system both provide an on-screen keyboard. If you choose to use the Trimble keyboard then to avoid seeing two on-screen keyboards at the same time you must disable the Windows on screen keyboard by disabling tablet mode. For more information, see Selecting the correct on-screen keyboard.
Trimble keyboard tips:
- The Trimble keyboard automatically appears when you tap in a field.
- When you tap in an alphanumeric field, the alphanumeric keys are displayed.
- To change between alphanumeric and symbol keys, tap **ABC / Sym**.
- Tap **Enter** to confirm your entry and close the keyboard.
- Tap **Tab** to confirm your entry and move to the next field without closing the keyboard.
- Tap **Esc** to clear any changes made to the current field and hide the keyboard.
- To use Shift, tap the Shift (arrow) key.
- To use CAPS lock, tap the Shift (arrow) key twice.
- To highlight the entry in a field, tap the Shift (arrow) key and then tap in the field. The contents of the field are selected.

Touch screen
To calibrate the touch screen
1. From the Windows **Start** menu, tap **Settings**.
2. In the search field enter calibration.
3. In the search results, select [calibrate the screen for pen or touch input].
 The [Tablet PC settings] dialog appears, showing the [Display] tab.
4. Tap [Calibrate...], and follow the prompts. Save the calibration.
You cannot disable the touch screen on the Trimble tablet.

Changing the speaker volume
Tap the sound icon and then use the slider to increase or decrease the volume. Tap the sound icon at the base of the volume slider to mute.

Backlight
On a Trimble tablet, the backlight is always enabled. To configure display settings such as screen brightness and text size, from the Windows **Start** menu, tap [Settings / System / Display].

Windows Explorer
Use Microsoft Windows Explorer to view and manage files stored in a Trimble tablet controller.
To start Windows Explorer, from the Windows **Start** menu, tap Windows Explorer.
You can also start Microsoft Windows Explorer from theTrimble Access menu.
For more information, refer to the Windows Help provided on the controller.

Deleting files
Use **Jobs / Open job** to copy and delete job files. If you delete job files, any associated GNSS files are automatically deleted.
Use Windows Explorer to delete all other file types.
Note - Files deleted in Windows Explorer cannot be recovered.
Trimble TSC3 controller

The TSC3 controller supports the following key features:

Internal GPS
The internal GPS can be used to navigate to a point, to store a position, and for a GPS search. GPS search is automatically enabled but a connected GNSS receiver is always used in preference to the internal GPS.

Internal compass
The internal compass provides an aid to navigation.

Internal camera
The 5 megapixel camera can be used to capture and attach an image to a point.

Internal cellular modem
The integrated GSM/mobile internet modem enables wireless Internet connectivity.

Keys
The following table describes the General Survey software functions that are associated with the controller keys.

<table>
<thead>
<tr>
<th>Key</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>📚</td>
<td>Start the Trimble Access menu.</td>
</tr>
<tr>
<td>Short press: Access the menu of available applications that are currently running, including the Trimble Access menu.</td>
<td></td>
</tr>
<tr>
<td>📦</td>
<td>You can customize the [Left App] button and the [Right App] button on to perform your most used functions in the General Survey software.</td>
</tr>
<tr>
<td>For details on how to set this up, see Customizing the App keys on a Slate/GeoXR/TSC3 controller.</td>
<td></td>
</tr>
<tr>
<td>✎</td>
<td>The Ok button relates to the icon available at the top right corner of the screen.</td>
</tr>
<tr>
<td>If the icon shows [Ok], then the Ok button saves and closes the form.</td>
<td></td>
</tr>
<tr>
<td>If the icon shows an [X], tap the icon or the press the [Ok] button to hide the General Survey software.</td>
<td></td>
</tr>
<tr>
<td>Note: If you tap [X] while the controller is connected to an instrument or GNSS receiver, the connection is not broken when the General Survey software is hidden.</td>
<td></td>
</tr>
</tbody>
</table>
Configuring the system options

New General Survey systems are shipped unconfigured. They are configured automatically when you connect the controller to the instrument. Alternatively, select Settings / Connect / Survey styles / Options and then select the option(s) appropriate for you:

- GNSS users - select GNSS surveying
- Conventional Total Station users - select TS surveying

For more information, refer to the General Survey Help or contact your local Trimble reseller. These options control the styles that are available and the relevant options that appear throughout the software. You can reconfigure the General Survey system at any time.

Controller operation

Touch screen

Calibrating the touch screen

1. Tap [Start / Settings / System / Screen].
2. Tap [Align Screen] and follow the prompts. If the calibration is successful, the [Settings] screen appears at the end of the calibration process. If the calibration was not successful, the target returns to the center of the screen and you must repeat the process.

Disabling the touch screen

To disable the Trimble TSC3 touch screen, press [Fn] + key. This disables the screen, but not the keypad. The touch screen remains disabled until you press [Fn] + key again or until you reset the controller.

Changing the speaker volume

Press Windows Start and then tap the sound icon at the top of the screen. From the panel of options, select the sound icon and then use the slider to increase or decrease the volume for the controller. Tap [Off] to mute.

Camera

By default, the camera resolution is set to the second lowest value. You may want to change this setting to obtain better-quality images. To do this, from in the Trimble Access software, press (Fn + 1) or from the General Survey menu, tap Instruments / Camera. Tap Menu / Resolution.

Backlight

On a TSC3 controller, press (Fn + 9) to enable or disable the backlight. To configure the settings, press the Windows button to access the Start menu and then tap [Setting / System / Backlight].
File Explorer

To start File Explorer on a TSC3 controller, press the Windows button and from the Start menu tap [File Explorer].

You can also start File Explorer from the Trimble Access menu.

Folders and files that appear in File Explorer are those from Flash storage.

For more information, refer to the Windows Help provided on the controller.

Deleting files

Use Jobs / Open job to copy and delete job files. If you delete job files, any associated GNSS files are automatically deleted.

Use File Explorer to delete all other file types.

WARNING - Files deleted in File Explorer cannot be recovered.

Using the keypad to run programs

- To run a program from the [Start] menu:

 Press Ctrl then Esc to display the [Start] menu, then use the arrow keys to select [Programs]. Press Enter to display a list of programs, then use the arrow keys to select the program that you want to run. Press Enter to run the program.

- If there is no icon or [Start] menu listing:

 If there are no icons highlighted on the desktop, press the Tab key until one is selected, then use the arrow keys to select [My Computer]. In [My Computer], use the arrow keys to highlight the Disk folder, then press Enter. Use the arrow keys to locate the program you want to run (it may be located in a sub folder), then press Enter to run the program.

Resetting the controller and troubleshooting

Performing a soft reset (warm boot)

You do not lose any data when you perform a soft reset.

To soft reset the TSC3 controller, hold down the Power key. After about five seconds, a countdown timer appears, indicating that the controller will reset. Continue to hold down the Power key for a further five seconds and then release it. The controller briefly displays the boot screen and then resets to the default Microsoft Windows desktop view.

Performing a hard reset (cold boot)

Trimble recommends you do not perform a hard reset on a Trimble TSC3 controller. Perform a soft reset, and if that does not resolve the issues, contact your local Trimble reseller.

Getting rid of out of memory errors

Memory is managed automatically. If you run out of memory, close programs you no longer need. To do this, select [Start / Settings / System / Task manager], select a program you no longer need and then tap End task.
Device connection and file transfer issues

Microsoft Explorer and the Trimble Data Transfer utility may sometimes fail to find the folders and to show files on the controller. This can occur if another Explorer window is still browsing to the controller from a previous connection, or if the controller has been reset and a new connection made. To avoid this, make sure that you close all Explorer windows before you disconnect the controller.

Replacing the battery

1. Hold down the power button for a few seconds but release it before the controller resets.
2. From the Power menu, select Replace Battery/SIM.
3. When prompted to replace the battery/SIM, tap Yes.
 - The controller will be placed in a low powered state and the screen will go black.
 - Do not press the power button until the new battery/SIM has been replaced.
 - You have one minute to replace the battery/SIM and turn on the controller.
4. Replace the battery and turn the controller on again.

Trimble CU controller

Note - Reference to a Trimble CU refers to all versions of the Trimble CU including the Trimble CU (Model 3) controller. When required, the Trimble CU (Model 3) controller is specifically mentioned. A Trimble CU (Model 3) controller can be identified by the label on the back.

Attaching and detaching the controller

To attach the controller to the Trimble VX Spatial Station or Trimble S Series total station, the controller holder, or the docking station, place the top of the controller onto the hot shoe connector and then gently push the bottom of the controller downward until it clips firmly into place.

To detach the controller from the Trimble VX Spatial Station or Trimble S Series total station, the controller holder, or the docking station:
1. Switch off the Trimble CU. This suspends the controller, and prevents it from rebooting next time you apply power.
2. Push in the clip at the bottom of the CU and then gently pull the bottom of the CU outward until the controller is released.

Keys

The following table describes the General Survey functions that are associated with the Trimble CU controller keys.
2 General Operations

On this instrument or receiver...

<table>
<thead>
<tr>
<th>Conventional or GNSS</th>
<th>tap... to...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>change between 123, ABC, and abc keyboard entry modes</td>
</tr>
<tr>
<td></td>
<td>modify the action of the other key that you tap in conjunction</td>
</tr>
<tr>
<td></td>
<td>tab between fields</td>
</tr>
<tr>
<td></td>
<td>activate the Enter button</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conventional</th>
<th>start or switch to the Trimble Access menu</th>
</tr>
</thead>
<tbody>
<tr>
<td>GNSS</td>
<td>start or switch to the Trimble Access menu</td>
</tr>
</tbody>
</table>

The following table describes the General Survey functions that are associated with the Trimble VX Spatial Station or Trimble S Series total station keys when the controller is attached to the instrument and General Survey is running.

On the instrument press... to...

<table>
<thead>
<tr>
<th>(short press)</th>
<th>activate the Enter button</th>
</tr>
</thead>
<tbody>
<tr>
<td>(long press)</td>
<td>power the instrument and controller on and off</td>
</tr>
<tr>
<td>(short press)</td>
<td>change face</td>
</tr>
<tr>
<td>(short press)</td>
<td>scroll between the face 1 view displays</td>
</tr>
<tr>
<td>(long press)</td>
<td>switch the face 2 backlight on or off</td>
</tr>
<tr>
<td>(short press)</td>
<td>activate the Enter button</td>
</tr>
</tbody>
</table>

When taking measurements the face 2 display shows the same measurement information as the view display button on the Measure topo and Station setup forms on face 1. This is typically horizontal angle, vertical angle and, after a measurement, the slope distance. To scroll through the different views, press the key. Information such as current measurement status appears in the face 2 status line at the bottom of the display.

When a duplicate observation is encountered the face 2 display shows delta Horizontal angle, delta horizontal distance and delta vertical distance.

Note - Before you store the point, confirm the Store as action in the face 1 display.
Use the face 2 keys to control the instrument’s onboard applications when the controller is not attached to the instrument. For more information, refer to the documentation for your instrument.

Configuring the system options

The new General Survey systems are shipped unconfigured. They are configured automatically when you connect the controller to the instrument. Alternatively, select *Settings / Connect / Survey styles / Options* and then select the option(s) appropriate for you:

- GNSS users - select *GNSS surveying*
- Conventional Total Station users - select *TS surveying*

For more information, refer to the *General Survey Help* or contact your local Trimble reseller. These options control the styles that are available and the relevant options that appear throughout the software. You can reconfigure the General Survey system at any time.

Connecting a Trimble CU controller to the office computer

The Trimble CU controller communicates through the docking station to the office computer using USB. The docking station must be connected to the office computer through the USB-to-Hirose cable.

You cannot connect the Hirose-to-7-pin lemo cable to a 7-pin lemo-to-DB9 cable (supplied with GNSS systems) and use this to connect the docking station to the serial port on the office computer.

Controller operation

Touch screen

Calibrating the touch screen

Open the Control Panel (Ctrl, Esc, [Settings / Control Panel]) then select the [Stylus] icon. In the [Stylus Properties] dialog select the [Calibration] > tab. Tap [Recalibrate] and follow the prompts, using the stylus to tap the target as it moves from the center of the screen, to each corner. If the calibration is successful, you are prompted to press Enter to accept the new settings. If the calibration was not successful, the target returns to the center of the screen and the process must be repeated.

Disabling the touch screen

To disable the Trimble CU touch screen, press [Ctrl]+ key. This disables the screen, but not the keypad. The touch screen will remain disabled until you press [Ctrl]+ again or you reset the controller.

You can disable the Trimble CU touch panel disabled notice: Tap [Start / Settings / Control Panel] in the [Touch Pad Disable] tab of the [Stylus Properties] screen and then clear the [Show notice each time touch is disabled] check box.
Changing the speaker volume
Open the Windows CE Control Panel (Ctrl, Esc, S, C) then select the Volume and Sounds icon. Use the slider to increase or decrease the volume. You can also use this dialog to turn on or off individual sounds, such as tapping the screen.

Backlight
On a Trimble CU controller, tap [Start / Settings / Control panel / Keyboard / Backlight] to enable or disable the keyboard backlight.

Windows Explorer
Use Microsoft Windows CE Explorer to view and manage files stored in a Trimble CU controller.
To start Windows Explorer, tap [Start / Programs / Windows Explorer].
You can also start Microsoft Windows CE Explorer from the Trimble Access menu.
For more information, refer to the Windows Help provided on the controller.

Deleting files
Use Jobs / Open job to copy and delete job files. If you delete job files, any associated GNSS files are automatically deleted.
Use Windows Explorer to delete all other file types.
WARNING - Files deleted in Windows Explorer cannot be recovered.

Using the keypad to run programs
- To run a program from the [Start] menu:
 Press Ctrl then Esc to display the [Start] menu, then use the arrow keys to select [Programs].
 Press Enter to display a list of programs, then use the arrow keys to select the program that you want to run. Press Enter to run the program.
- If there is no icon or [Start] menu listing:
 If there are no icons highlighted on the desktop, press the Tab key until one is selected, then use the arrow keys to select [My Computer]. In [My Computer], use the arrow keys to highlight the Disk folder, then press Enter. Use the arrow keys to locate the program you want to run (it may be located in a sub folder), then press Enter to run the program.

Resetting the controller and troubleshooting

Performing a soft reset (warm boot)
You do not lose any data when you perform a soft reset.
- To reset the Trimble CU, hold down the Ctrl key and the 1 key, then press and release the 9 key.
- To reset the Trimble CU (Model 3) controller, hold down the Power key and then select Options / Reset.
Performing a hard reset (cold boot) on a Trimble CU controller
Perform a hard reset only if a soft reset fails to resolve an issue. After a hard reset, the operating system is reloaded into RAM from the Flash memory. Some software programs may also store shortcuts or database information in RAM; this is erased during a hard reset.
To perform a hard reset, hold down the Power key. After about five seconds, a countdown timer appears, indicating that the controller will reset. Continue to hold down the Power key for a further five seconds, then release it. The controller briefly displays the boot screen and then resets to the default Microsoft Windows desktop view.

Performing a hard reset (cold boot) on a Trimble CU (Model 3) controller
Trimble recommends that you do not perform a hard reset on a Trimble CU (Model 3) controller. If a soft reset does not resolve the issues, contact your local Trimble reseller.

Getting rid of out of memory errors
Trimble CU (Model 3) controller:
Memory is managed automatically. If you run out of memory, select [Start / Settings / System / Memory / Running Programs] and stop the running programs you no longer need.
Trimble CU controller:
Open the Control Panel (Ctrl, Esc, S, C) then select the [System] icon. In the [System Properties] screen, select the [Memory] tab, then move the slider-bar to the left to increase the amount of RAM memory allocated to running programs.

Device connection and file transfer issues
Microsoft Explorer and the Trimble Data Transfer utility may sometimes fail to find the folders and to show files on the controller. This can occur if another Explorer window is still browsing to the controller from a previous connection, or if the controller has been reset and a new connection made. To avoid this, make sure that you close all Explorer windows before you disconnect the controller.

Pairing a Trimble tablet with a Trimble CU controller
To avoid time-out issues when pairing a Trimble tablet with a Trimble CU controller, Trimble recommends that you promptly enter a short pairing code.

Trimble CU Suspend mode
The Trimble CU takes its power from an external power source, such as an instrument, Robotic Holder, GNSS Holder, or a docking station.
The Trimble CU controller has an internal battery used while in suspend mode. Suspend mode enables you to remove the controller from one power source and then attach it to another power source within a time period that you define. You can then resume working from the same place in the software that you were before you turned off the controller.
After the suspend time has elapsed, the battery automatically shuts down and the Trimble CU has to reboot when starting again. If the internal battery runs low on power the Trimble CU powers down sooner. Fully charged and under normal conditions, the internal battery should have capacity for five suspend sequences.
General Operations

Note - Before you remove the Trimble CU from its power source, press the power button to turn off the controller. Otherwise the controller has to reboot when it restarts.

To configure the power settings on the Trimble CU (Model 3) controller:
1. Tap the [Start] menu and then select [Settings / Control Panel / Power].
2. Use the [PowerOff] tab to configure the suspend state when connected using external power and battery power.
3. Use the [Battery] tab to show the current power status.

To configure the power settings on the Trimble CU:
1. Tap the [Start] menu and then select [Settings / Control Panel / Power].
2. Use the [Schemes] tab to configure the suspend state when connected using external power and battery power.
3. Use the [Systems Power] tab to display the current power status.
4. Use the [Power Key] tab to configure how the system behaves when the power key is pressed.

Trimble Geo7X handheld

Note - To use a Geo7X with Trimble Access version 2017.22, the Geo7X operating system must be version 6.7.16.64960 or later. To upgrade the operating system, go to www.trimble.com/Survey/Trimble-Geo-7x.aspx and then click Support.

The Trimble Geo7X supports GNSS surveys (no conventional support).

The Trimble Geo7X supports the following key features:

Internal GNSS

The internal GNSS can be used for all survey operations including measure and stakeout. The receiver will start automatically when an application is started.

Internal orientation sensors

The Trimble Geo7X has a built-in compass, accelerometer, and gyroscope, enabling you to determine orientation and tilt when using the laser rangefinder module.

Internal camera

The 5 megapixel camera can be used to capture and attach an image to a point.

Internal cellular modem

The integrated GSM/mobile internet modem enables wireless Internet connectivity.

Optional rangefinder module

The rangefinder module enables you to complete many different types of measurement tasks including offsets, width, height, and angle measurements.

Note - When calibrating the sensors, make sure you perform the calibration away from all sources of magnetic interference.
Trimble Geo7X tips

- The Trimble Geo7X works only with the internal GNSS receiver. You cannot connect an external receiver to the Trimble Geo7X.
- The Trimble Geo7X cannot be used as a base.
- If you change the antenna during a survey, you are prompted to end the survey.
- Closing applications when not needed increases battery life.

Keys

The following table describes the General Survey software functions that are associated with the Trimble Geo7X controller keys.

<table>
<thead>
<tr>
<th>Key</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Home/Power button. Use this button to turn on the Geo7X, place it in Suspend mode, wake it up from Suspend mode, and to return to the Home screen from whichever screen or application you are in.</td>
</tr>
<tr>
<td>2</td>
<td>Camera button. When in Trimble Access, press and hold, and then release the button to activate the camera.</td>
</tr>
<tr>
<td>3</td>
<td>The [Left App] button and the [Right App] button on the Trimble Geo7X controller provide quick access to the Esc and Enter buttons respectively. You can customize the [Left App] button and the [Right App] button to perform your most used functions in the General Survey software. For details on how to set this up, see Customizing the App keys on a Geo7X controller.</td>
</tr>
</tbody>
</table>

Status LEDs

Battery status

When the battery status light/led is:
- Green - battery charging is complete
- Orange - battery is charging
- Red and flashing - battery level is critically low
- Red - battery fault
GNSS receiver status

When the receiver status light/led is:
- Green and flashing - receiver is on and GNSS positions are available
- Orange and flashing - receiver is on but GNSS positions are not available
- Blue and flashing - receiver is starting or updating
- Red - GNSS fault

Wireless radio status

When the receiver status light/led is green and flashing one of the wireless connections (Wi-Fi, Bluetooth, or Phone) is turned on.

Handheld operation

Calibrating the touch screen

1. On the Home screen, tap the Power button and then tap :)
2. Follow the on-screen instructions. If the calibration is not successful, the target returns to the center of the screen and you must repeat the process.

You cannot disable the touch screen on the Trimble Geo7X.

Calibrating the orientation sensors

Tap Start / Settings / System / Sensor Calibration and then follow the on-screen instructions. For more information, refer to the Geo 7 Series User Guide.

Aligning the rangefinder

If you have purchased the rangefinder module, you can align the rangefinder at any time. To do this, tap Start / Settings / System / Laser Alignment and then follow the on-screen instructions. For more information, refer to the Geo 7 Series User Guide.

Changing the speaker volume

Tap the Trimble button, select Start Menu and then tap the status bar at the top of the screen. Tap the Volume icon in the pull-down list, then drag the volume sliders as required.

Backlight

Tap the Trimble button, select Start Menu and then select [Settings / System / Backlight] to configure the backlight settings.

File Explorer

To start File Explorer, tap the Trimble button, select Start Menu and then tap [File Explorer].

You can also start File Explorer from the Trimble Access menu.

Folders and files that appear in File Explorer are those from Flash storage.
For more information, refer to the Windows Help provided on the controller.

Deleting files
In the Trimble Access menu, from the General Survey menu select Jobs / Open job to copy and delete job files. If you delete job files, any associated GNSS files are automatically deleted.
Use File Explorer to delete all other file types.
WARNING - Files deleted in File Explorer cannot be recovered.

Using the keypad to run programs
- To run a program from the [Start] menu:
 Press Ctrl then Esc to display the [Start] menu, then use the arrow keys to select [Programs].
 Press Enter to display a list of programs, then use the arrow keys to select the program that you want to run. Press Enter to run the program.
- If there is no icon or [Start] menu listing:
 If there are no icons highlighted on the desktop, press the Tab key until one is selected, then use the arrow keys to select [My Computer]. In [My Computer], use the arrow keys to highlight the Disk folder, then press Enter. Use the arrow keys to locate the program you want to run (it may be located in a sub folder), then press Enter to run the program.

Resetting the handheld and troubleshooting

Performing a soft reset (warm boot)
To force an application to close, tap Start / Settings / Task Manager. Select the application you want to close, then tap End Task.
If you cannot force the application to close, or if closing and restarting the application does not fix the problem, try restarting the Trimble Geo7X. To restart the handheld, press the Power/Home button to go to the Home screen, then press the Power/Home button again to launch the Power menu. Tap Restart.
You do not lose any data when you perform a soft reset.

Performing a hard reset (cold boot)
Trimble recommends you do not perform a hard reset on a Trimble Geo7X controller. Perform a soft reset, and if that does not resolve the issues, contact your local Trimble reseller.

Getting rid of out of memory errors
Memory is managed automatically. If you run out of memory, close programs you no longer need.
To do this, tap the Trimble button, select Start Menu, select [Settings / System / Task manager], select a program you no longer need and then tap End task.
Inserting and removing the battery

To insert the battery:
1. Slide the battery into the cavity with the label facing upward.
2. Push the battery in until it clicks into place.

To remove the battery:
1. Pinch the battery latches together until the battery is ejected.
2. Slide the battery out.

Trimble GeoXR controller

The Trimble GeoXR supports GNSS surveys (no conventional support).

The Trimble GeoXR supports the following key features:

Internal GNSS
The internal GNSS can be used for all survey operations including measure and stakeout.
The receiver will start automatically when an application is started.
The middle LED will flash blue when the receiver is starting/initializing and then flash orange when it is running. If the middle LED is red, there is no receiver firmware or there was an error starting the receiver.

Internal camera
The 5 megapixel camera can be used to capture and attach an image to a point.

Internal cellular modem
The integrated GSM/mobile internet modem enables wireless Internet connectivity.

Trimble GeoXR tips
- The Trimble GeoXR works only with the internal GNSS receiver. You cannot connect an external receiver to the Trimble GeoXR.
- The Trimble GeoXR cannot be used as a base.
- If you change the antenna during a survey, you are prompted to end the survey.
- Closing applications when not needed increases battery life.
Keys

The following table describes the General Survey software functions that are associated with the Trimble GeoXR controller keys.

<table>
<thead>
<tr>
<th>Key</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camera</td>
<td>Camera button. When in Trimble Access, press and hold, and then release the camera button to select the Trimble button.</td>
</tr>
<tr>
<td>[Left App]</td>
<td>The [Left App] button and the [Right App] button on the Trimble GeoXR controller provide quick access to the Esc and Enter buttons respectively. You can customize the [Left App] button and the [Right App] button to perform your most used functions in the General Survey software. For details on how to set this up, see Customizing the App keys on a Slate/GeoXR/TSC3 controller.</td>
</tr>
</tbody>
</table>

Status LEDs

Battery status

When the battery status light/led is:

- Green - battery charging is complete
- Orange - battery is charging
- Red and blinking slowly - battery level is critically low
- Red - battery fault

GNSS receiver status

When the receiver status light/led is:

- Green and blinking slowly - receiver is on and GNSS positions are available
- Orange and blinking fast - receiver is on but GNSS positions are not available

Wireless radio status

When the receiver status light/led is green and blinking fast one of the wireless connections (Wi-Fi, Bluetooth, or Phone) is turned on.

Handheld operation

Calibrating the touch screen

1. Tap the Trimble button, select Start Menu and then select [Settings / System / Screen].
2. Tap [Align Screen] and follow the prompts. If the calibration is successful, the [Settings] screen appears at the end of the calibration process. If the calibration was not successful, the target returns to the center of the screen and you must repeat the process.

You cannot disable the touch screen on the Trimble GeoXR.
Change the speaker volume
Tap the Trimble button, select Start Menu and then tap the sound icon at the top of the screen. From the panel of options, select the sound icon and then use the slider to increase or decrease the volume for the controller. Tap [Off] to mute.

Backlight
Tap the Trimble button, select Start Menu and then select [Settings / System / Backlight] to configure the backlight settings.

File Explorer
To start File Explorer, tap the Trimble button, select Start Menu and then tap [File Explorer].
You can also start File Explorer from the Trimble Access menu.
Folders and files that appear in File Explorer are those from Flash storage.
For more information, refer to the Windows Help provided on the controller.

Deleting files
Use Jobs / Open job to copy and delete job files. If you delete job files, any associated GNSS files are automatically deleted.
Use File Explorer to delete all other file types.
WARNING - Files deleted in File Explorer cannot be recovered.

Using the keypad to run programs
- To run a program from the [Start] menu:
 Press Ctrl then Esc to display the [Start] menu, then use the arrow keys to select [Programs].
 Press Enter to display a list of programs, then use the arrow keys to select the program that you want to run. Press Enter to run the program.
- If there is no icon or [Start] menu listing:
 If there are no icons highlighted on the desktop, press the Tab key until one is selected, then use the arrow keys to select [My Computer]. In [My Computer], use the arrow keys to highlight the Disk folder, then press Enter. Use the arrow keys to locate the program you want to run (it may be located in a sub folder), then press Enter to run the program.

Resetting the handheld and troubleshooting

Performing a soft reset (warm boot)
You do not lose any data when you perform a soft reset.
To reset the Trimble GeoXR controller, hold down the Power key and then select Reset.

Performing a hard reset (cold boot)
Trimble recommends you do not perform a hard reset on a Trimble GeoXR controller. Perform a soft reset, and if that does not resolve the issues, contact your local Trimble reseller.
Getting rid of out of memory errors
Memory is managed automatically. If you run out of memory, close programs you no longer need. To do this, tap the Trimble button, select Start Menu, select [Settings / System / Task manager], select a program you no longer need and then tap End task.

Replacing the battery
1. Hold down the power button.
2. From the Power menu, select Swap battery.
3. Wait for the red battery light/led to go off.
4. Swap the battery and then press the power button to turn on the controller again.

Trimble Slate controller
The Trimble Slate controller supports the following key features:

Internal GPS
The internal GPS can be used to navigate to a point, to store a position, and for a GPS search. GPS search is automatically enabled but a connected GNSS receiver is always used in preference to the internal GPS.

Internal compass
The internal compass provides an aid to navigation.

Internal camera
The 8 megapixel camera can be used to capture and attach an image to a point.

Internal cellular modem
The integrated GSM/mobile internet modem enables wireless Internet connectivity.

Internal phone
The Trimble Slate controller includes a phone.

Trimble Slate controller tips
- By default, the [Left Softkey] button and the [Right Softkey] button are assigned to the Left Softkey and Right Softkey buttons respectively.
- Closing applications when not needed increases battery life.
Battery status LED
When the battery status light/led is:
- Green - battery charging is complete
- Orange - battery is charging
- Red and blinking slowly - battery level is critically low
- Red - low battery

Controller operation

Touch screen

Calibrating the touch screen
1. Tap the Windows button to access the Start menu and then select [Settings / System / Screen].
2. Tap [Align Screen] and follow the prompts. If the calibration is successful, the [Settings] screen appears at the end of the calibration process. If the calibration was not successful, the target returns to the center of the screen and you must repeat the process.

Disabling the touch screen
You cannot disable the touch screen on the Trimble Slate controller.

Changing the speaker volume
Tap the Windows button to access the Start Menu and then tap the sound icon at the top of the screen. From the panel of options, select the sound icon and then use the slider to increase or decrease the volume for the controller. Tap [Off] to mute.

Backlight
On a Trimble Slate controller, press the Windows button to access the Start menu and then select [Settings / System / Backlight] to configure the backlight settings.

File Explorer
To start File Explorer on a Trimble Slate controller, press the Windows button and from the Start menu tap [File Explorer].
You can also start File Explorer from the Trimble Access menu.
Folders and files that appear in File Explorer are those from Flash storage.
For more information, refer to the Windows Help provided on the controller.

Deleting files
Use Jobs / Open job to copy and delete job files. If you delete job files, any associated GNSS files are automatically deleted.
Use File Explorer to delete all other file types.
WARNING - Files deleted in File Explorer cannot be recovered.

Using the keypad to run programs

- To run a program from the [Start] menu:
 Press Ctrl then Esc to display the [Start] menu, then use the arrow keys to select [Programs].
 Press Enter to display a list of programs, then use the arrow keys to select the program that
 you want to run. Press Enter to run the program.
- If there is no icon or [Start] menu listing:
 If there are no icons highlighted on the desktop, press the Tab key until one is selected, then
 use the arrow keys to select [My Computer]. In [My Computer], use the arrow keys to highlight
 the Disk folder, then press Enter. Use the arrow keys to locate the program you want to run (it
 may be located in a sub folder), then press Enter to run the program.

Resetting the controller and troubleshooting

Performing a soft reset (warm boot)
You do not lose any data when you perform a soft reset.
To reset the Trimble Slate controller, hold down the Power key and then select Reset.

Performing a hard reset (cold boot)
Trimble recommends you do not perform a hard reset on a Trimble Slate controller. Perform a soft
reset, and if that does not resolve the issues, contact your local Trimble dealer.

Getting rid of out of memory errors
Memory is managed automatically. If you run out of memory, close programs you no longer need.
To do this, tap the Windows button, to access the Start Menu and select [Settings / System / Task
manager], select a program you no longer need and then tap End task.

Trimble Slate controller battery
You cannot remove the battery from the Trimble Slate controller. If the battery fails return the
device to Trimble or an Authorized Service Provider to have the battery replaced.

Trimble S3 controller

Calibrating the touch screen
Open the Control Panel (Ctrl, Esc, [Settings / Control Panel]) then select the [Stylus] icon. In the
[Stylus Properties] dialog select the [Calibration] >tab. Tap [Recalibrate] and follow the prompts,
using the stylus to tap the target as it moves from the center of the screen, to each corner. If the
calibration is successful, you are prompted to press Enter to accept the new settings. If the
calibration was not successful, the target returns to the center of the screen and the process must
be repeated.
Disabling the touch screen

To disable the Trimble S3 total station touch screen, press [Ctrl]+key. This disables the screen, but not the keypad. The touch screen will remain disabled until you press [Ctrl]+again or you reset the controller.

Using the keypad to run programs

For the Trimble S3 total station use the arrow keys to navigate to the icon for the program that you want to run. Press Enter to run the program.

Performing a hard reset (cold boot) on a Trimble S3 total station

After a hard reset, the operating system is reloaded into RAM from the Flash memory. Some software programs may also store shortcuts or database information in RAM; this is erased during a hard reset.

Press the power button and then tap the Options button in the Power Key dialog. Tap the Reset button in the Power Option dialog and then tap Yes in the Restart dialog to carry out the reset. This will shut down the instrument and then automatically restart it. Alternatively, you can tap the Shutdown button in the Power Option dialog and then confirm the shutdown. The instrument will shut down any running programs and return to the operating system desktop when you press the power button.

If you remove the battery, the instrument shuts down. When you replace the battery and turn on the power, the instrument restarts.

File storage

The RAM storage in the instrument is volatile and is shared between Storage memory and Program memory.

- Storage memory is required for such things as the Operating System, and installing programs.
- Program memory is required to run programs. When Program memory is low, programs may run slowly, become unresponsive, or even crash.

Flash memory is permanent, so data is not lost if the instrument loses power or after a hard reset. However, as with a computer hard disk, this storage may occasionally fail.

On the instrument, folders and files that appear in Explorer are those from Flash storage.

Changing the speaker volume

Open the Windows CE Control Panel (Ctrl, Esc, S, C) then select the Volume and Sounds icon. Use the slider to increase or decrease the volume. You can also use this dialog to turn on or off individual sounds, such as tapping the screen.

Backlight

On a Trimble S3 total station, tap [Start / Settings / Display / Backlight] to configure the backlight settings.
Trimble S3 total station stand-by mode

When you press the power key on the instrument to switch it off you get the option to place the instrument in stand-by mode. Stand-by mode shuts down the instrument but provides enough power to retain all settings and allow you to resume working from the same place in the software that you were before entering stand-by mode.

If you remove both batteries from the instrument, or they run completely flat, after replacing the batteries and switching on the instrument, the Microsoft Windows operating system will boot up and the General Survey software will start up automatically.

If you remove the battery from the instrument, or it runs completely flat, after replacing the battery and switching on the instrument, the Microsoft Windows operating system will boot up and you can run the General Survey software.

Trimble C5 total station

Keys

The following table describes the General Survey functions that are associated with the Trimble C5 total station keys. The keys on the face 2 panel are the same as for face 1.

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Star</td>
<td>Access the Instrument functions screen.</td>
</tr>
<tr>
<td>H/V</td>
<td>Change the angle view in Survey Basic.</td>
</tr>
<tr>
<td>Keyboard</td>
<td>Show or hide the onscreen keyboard. Alternatively, tap the keyboard icon in the Trimble Access task bar at the top of the screen.</td>
</tr>
</tbody>
</table>
| AF | When the auto focus *Mode* is set to *Automatic - on prism or Key only*, press the AF key to auto focus the instrument.
When the auto focus *Mode* is set to *Continuous*, the EDM continually measures, and the instrument continually focuses. If you use the manual focusing ring then auto focus stops until you press the AF key on the instrument keypad.
Select the auto focus *Mode* in the *Instrument settings* screen of the Trimble Access software. See *Trimble C5 auto focus settings*. |
| MSR | Take a measurement to the last used non-DR target. |
| MSR2 | Take a measurement to a DR target. |
| Enter | Activate the softkey that has focus on-screen (usually Enter, Accept or Next). |
| Ctrl + Esc | Access the Windows menu. |
| Arrow keys | Navigate through the Trimble Access software. Up and down arrows move between fields, left and right arrows allow you to edit fields. |
Controller operation

Dual face display
The C5 instrument has a dual face display. To configure which display is turned on:
1. In Trimble Access, from the General Survey menu select Instruments / Instrument settings.
2. In the Dual face display field, select the appropriate option:
 - *F1 only*: Turns on the face 1 display. Face 2 is always off.
 - *F1 and F2*: Both face 1 and face 2 displays are always on.
 - *Automatic*: Depending on the position of the telescope, either the face 1 or the face 2 display is on.

Both displays are automatically turned on when the electronic level is active. The default setting is *Automatic*.

Calibrating the touch screen
Open the Control Panel (Ctrl + Esc, [Settings / Control Panel]) then select the [Stylus] icon. In the [Stylus Properties] dialog select the [Calibration] tab. Tap [Recalibrate] and follow the prompts, using the stylus to tap the target as it moves from the center of the screen, to each corner. If the calibration is successful, you are prompted to press Enter to accept the new settings. If the calibration was not successful, the target returns to the center of the screen and the process must be repeated.

Changing the speaker volume
Open the Control Panel (Ctrl + Esc, [Settings / Control Panel]) then select the Volume and Sounds icon. Use the slider to increase or decrease the volume. You can also use this dialog to turn on or off individual sounds, such as tapping the screen.

Backlight
Open the Control Panel (Ctrl + Esc, [Settings / Control Panel]) then select [Display / Backlight] to configure the backlight settings.

File storage
The RAM storage in the instrument is volatile and is shared between storage memory and program memory.
- Storage memory is required for such things as the operating system, and installing programs.
- Program memory is required to run programs. When program memory is low, programs may run slowly, become unresponsive, or even crash.

Flash memory is permanent, so data is not lost if the instrument loses power or after a hard reset. However, as with a computer hard disk, this storage may occasionally fail.
On the instrument, folders and files that appear in Explorer are those from flash storage.
Performing a hard reset (cold boot) on a Trimble C5 total station

After a hard reset, the operating system is reloaded into RAM from the Flash memory. Some software programs may also store shortcuts or database information in RAM; this is erased during a hard reset.

To reset the total station, press the power button and tap the Options button on the Power Key! screen. Tap the Reset button in the Power Option screen. This will shut down the instrument and then automatically restart it. You can also tap the Shutdown button in the Power Option dialog and then confirm the shutdown. The instrument will then do a full restart when the power button is pressed. Removing both batteries also results in an instrument shutdown and a full restart when the batteries are replaced and the instrument is switched on.

Trimble M3 total station

Keys

Trimble M3 total station keys

The following table describes the General Survey functions that are associated with the Trimble M3 total station keys.

<table>
<thead>
<tr>
<th>Tap...</th>
<th>To...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>change between 123, ABC, and abc keyboard entry modes</td>
</tr>
<tr>
<td></td>
<td>modify the action of the other key that you tap in conjunction</td>
</tr>
<tr>
<td></td>
<td>access the Trimble functions screen</td>
</tr>
</tbody>
</table>

Trimble M3 total station face 2 keys

When taking measurements, the face 2 display shows the same measurement information as the view display button on the Measure topo and Station setup screens on face 1. This is typically horizontal angle, vertical angle and, after a measurement, the slope distance.

To scroll through the different views, press 🔄. Information such as current measurement status appears in the face 2 status line at the bottom of the display.

To take a measurement, press 🔄. 🔄 acts in the same manner as the Enter key on the face 1 keyboard so you can use it to start a measurement.

When a duplicate observation is encountered the face 2 display shows delta Horizontal angle, delta horizontal distance and delta vertical distance.

Note - Before you store the point, confirm the Store as action in the face 1 display.

The first button 🔄 on the face 2 screen controls the backlight and contrast settings.
To change the backlight:
1. Press .
2. Press to switch the backlight on and off.
3. Press to close the backlight control.

To change the contrast:
1. Press .
2. Press to select the contrast icon.
3. Press to display the contrast slider control.
4. Press to increase the contrast, and press to decrease the contrast.
5. Press to close the contrast control.

Controller operation

Calibrating the touch screen
Open the Control Panel (Ctrl, Esc, [Settings / Control Panel]) then select the [Stylus] icon. In the [Stylus Properties] dialog select the [Calibration] tab. Tap [Recalibrate] and follow the prompts, using the stylus to tap the target as it moves from the center of the screen, to each corner. If the calibration is successful, you are prompted to press Enter to accept the new settings. If the calibration was not successful, the target returns to the center of the screen and the process must be repeated.

Disabling the touch screen
To disable the Trimble M3 total station touch screen, press [Ctrl]+ key. This disables the screen, but not the keypad. The touch screen will remain disabled until you press [Ctrl]+ again or you reset the controller.

Changing the speaker volume
Open the Windows CE Control Panel (Ctrl, Esc, S, C) then select the Volume and Sounds icon. Use the slider to increase or decrease the volume. You can also use this dialog to turn on or off individual sounds, such as tapping the screen.

Backlight
On a Trimble M3 total station, tap [Start / Settings / Display / Backlight] to configure the backlight settings.

Using the keypad to run programs
For the Trimble M3 total station use the arrow keys to navigate to the icon for the program that you want to run. Press Enter to run the program.
File storage

The RAM storage in the instrument is volatile and is shared between Storage memory and Program memory.

- Storage memory is required for such things as the Operating System, and installing programs.
- Program memory is required to run programs. When Program memory is low, programs may run slowly, become unresponsive, or even crash.

Flash memory is permanent, so data is not lost if the instrument loses power or after a hard reset. However, as with a computer hard disk, this storage may occasionally fail.

On the instrument, folders and files that appear in Explorer are those from Flash storage.

Performing a hard reset (cold boot) on a Trimble M3 total station

After a hard reset, the operating system is reloaded into RAM from the Flash memory. Some software programs may also store shortcuts or database information in RAM; this is erased during a hard reset.

Press the power button and tap the Options button on the Power Key! dialog presented. Tap the Reset button on the Power Option dialog then tap Yes on the Restart dialog to carry out the reset. This will shut down the instrument and then automatically restart it. You can also tap the Shutdown button on the Power Option dialog and then confirm the shutdown. The instrument will then do a full restart when the power button is pressed. Removing both batteries also results in an instrument shutdown and a full restart when the batteries are replaced and the instrument is switched on.

Controller keyboard functions

The controller provides several additional keyboard functions that you can access through the operating system.

- Numeric and alphanumeric modes (Trimble CU, Trimble S3 total station, and Trimble M3 total station only)
- Input panel
- Transcriber
- Keyboard properties (Repeat, Sticky keys, Key preview)

For more information on these functions, refer to the help. Tap Start / Help.

Numeric and alphanumeric modes

(Trimble CU, Trimble S3 total station, and Trimble M3 total station only)

Press the alpha key (a) to switch between numeric and alphanumeric modes. The current mode appears on the taskbar.

When you press the alpha key, the controller scrolls through 123 - ABC - abc.
The General Survey software automatically sets the mode to numeric for numeric fields. For fields that can be either alpha or numeric, the software inspects the field and then does one of the following.

<table>
<thead>
<tr>
<th>If the field contains the following character type...</th>
<th>the software sets the field to...</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha</td>
<td>alpha</td>
</tr>
<tr>
<td>numeric</td>
<td>numeric</td>
</tr>
<tr>
<td>alpha and numeric</td>
<td>match the last character in the field</td>
</tr>
</tbody>
</table>

Input panel

The input panel looks and functions like a PC keyboard. Use it as an alternative to the controller keyboard for entering characters.

Trimble tablet

To access the input panel, do one of the following:

- Tap once in the field requiring text and then tap the input icon.
- Press the (Fn + F1) button

The keyboard accessed by these methods are slightly different. Use the keyboard that best suits your needs.

TSC3

To open or close the input panel, press and hold Ctrl and then press 7.

Tip - If you do not find the default predictive text functionality useful, you can disable it. To do this, tap [Windows / Settings / Personal / Input], select the [Word Completion] tab and then clear the Suggest words when entering text option.

Trimble CU

To access the input panel through:

- the taskbar icon (), tap the icon and then select the keyboard to display. To close, tap the icon again and then select [Hide Input Panel].
- a keyboard shortcut, press and hold Ctrl and then press 7. To close, press and hold Ctrl and then press 7. again.

Trimble S3 total station and Trimble M3 total station

To access the input panel through:

- the taskbar icon (), tap the icon and then select the keyboard to display. To close, tap the icon again and then select [Hide Input Panel].
- a keyboard shortcut, press and hold Ctrl and then press 7. To close, press and hold Ctrl and then press 7. again.
Trimble C5 total station
Tap the keyboard icon in the title bar or press F3 to show or hide the keyboard.

Trimble Geo7X
The keyboard icon automatically appears in the tile bar of any application requiring text or numeric input. To display the keyboard, tap or tap a text box in the application. To hide the keyboard, tap again.

Tip - If you do not find the default predictive text function useful, you can disable it. To do this, tap the Trimble button, select Start Menu, select [Settings / Personal / Input], select the [Word Completion] tab and then clear the Suggest words when entering text option.

Trimble GeoXR
The Trimble GeoXR controller does not have a taskbar icon for the input panel.

Tip - If you do not find the default predictive text function useful, you can disable it. To do this, tap the Trimble button, select Start Menu, select [Settings / Personal / Input], select the [Word Completion] tab and then clear the Suggest words when entering text option.

Trimble Slate controller
The Trimble Slate controller does not have a taskbar icon for the input panel.

Transcriber
Transcriber recognizes characters that you write on the controller screen with the stylus.

Trimble tablet
To enable the transcriber, access the input panel by tapping once in the field requiring text and then tap the input icon. and then select the transcriber icon ().

To further configure transcriber options, access the input panel and then tap [Tools / Options]. Alternatively, tap the Trimble button to access the Start menu, and then tap [Control Panel / Tablet PC Settings - Other] and select Go to Pen and Touch.

TSC3
The TSC3 controller does not support the transcriber.

Trimble CU
To enable the transcriber, tap [Start / Programs / Accessories / Transcriber].

The Transcriber icon on the taskbar appears with a gray background.

To stop using Transcriber, tap the icon on the task bar. The icon background color changes. To start using again, tap the icon.

Note - When Transcriber is enabled, you need to tap and briefly hold screen buttons or icons to activate them. There is a slight delay while Transcriber determines if you are using the stylus to write with.
Trimble S3 total station and Trimble M3 total station

Tap [Start / Programs / Accessories / Transcriber].

The Transcriber Input Panel appears on screen and the taskbar icon changes to

To stop using Transcriber, tap the icon on the task bar and select [Hide Input Panel].

Note - When Transcriber is enabled, you need to tap and briefly hold screen buttons or icons to activate them. There is a slight delay while Transcriber determines if you are using the stylus to write with.

Trimble GeoXR and Geo7X controller

The GeoXR and Geo7X controllers do not support the transcriber.

Trimble Slate controller

The Trimble Slate controller does not support the transcriber.

Keyboard properties

To set the following:

Repeat

Repeat delay sets the time from when you first press a key to when the character starts repeating. Repeat rate sets the speed at which the character repeats.

To access the delay and repeat configuration:

- On a Trimble tablet, tap the Trimble button to access the *Start menu*, and then tap [Control Panel / Keyboard].
- On a TSC3 controller, press the Windows button to access the *Start menu* and then tap [Setting / Personal / Buttons - Up/Down control].
- On a Geo7X/GeoXR controller, tap the Trimble button, select *Start Menu* and then select [Setting / Personal / Buttons / Up/Down Control].
- On a Trimble Slate controller, press the Windows button to access the *Start menu* and then tap [Setting / Personal / Buttons - Up/Down control].

Sticky keys

(Trimble CU only)

Use this to access a hotkey sequence without having to press and hold a modifier key (*Alt*, *Ctrl*, or *Shift*) while you press the hotkey.

To access the sticky key configuration:

- On a Trimble CU controller, Trimble S3 total station, or Trimble M3 total station, tap [Start / Settings / Control panel / Keyboard].

If Sticky keys is enabled, when you press a modifier key, that key ‘sticks’ until you press it again. For example, on the Trimble CU, use sticky keys to copy text (``Ctrl``+``C``) and paste text (``Ctrl``+``V``).
Sticky keys enabled: Press Ctrl, and then press 8 three times (C). Press Ctrl and then press 2 three times (V).

Sticky keys disabled: Press and hold Ctrl while you press 8 three times (C). Press and hold Ctrl while you press 2 three times (V).

Sticky Ctrl

(Trimble S3 total station and Trimble M3 total station only)

Use this to access a hotkey sequence without having to press and hold the Ctrl key while you press the hotkey.

If Sticky Ctrl is enabled, when you press the Ctrl key, it 'sticks' until you press it again. For example, use Sticky Ctrl to copy text (Ctrl+C) and paste text (Ctrl+V).

- Sticky Ctrl enabled: Press Ctrl, and then press 8 three time (C). Press Ctrl and then press 2 three times (V).
- Sticky Ctrl disabled: Press and hold Ctrl while you press 8 three times (C). Press and hold Ctrl while you press 2 three times (V).

Key preview

(Trimble CU, Trimble S3 total station, and Trimble M3 total station only)

When the controller is in alpha mode, a popup window shows the active character. For example, if you press 8 four times, the key preview shows, in succession, a, b, c, 8.

Note - You do not need to wait for the previewed character to be accepted before you press another key, for example Enter or another character. When you press another key, the controller accepts the character that is currently in the preview window. This function enables you to enter characters faster.

Alternatively, shorten the key preview to speed up alpha character entry.

For more information on these functions, refer to the help. Tap Start / Help.

Printing from a P4T mobile Bluetooth printer

You can print directly from controllers in the field to the Zebra P4T mobile printer. The mobile P4T printer prints barcode labels and documents up to 4" wide that are designed for outdoor use.

The Zebra P4T printer is available in several different configurations. Trimble recommends purchasing a model that has Bluetooth wireless technology. The P4T includes a rechargeable battery, but may not include an AC adapter. Printer ribbon and paper/labels must also be purchased separately. Check with your supplier regarding consumables and a suitable charging system to meet your needs.

From the Stakeout View before storage screen, you can print the stakeout details displayed. This is particularly useful for creating labels that can be affixed to the stake.
Setting up and using the P4T printer

1. Turn on the P4T Bluetooth printer.
2. From the Trimble Access screen, select Settings / Bluetooth and then tap Config and scan for the printer. The printer name displayed is the serial number displayed on the back of the printer. When setting up the Bluetooth pairing you should not need to enter a passcode, or enable the Serial Port check box.
3. Select the printer in the Connect to printer field and tap Accept. The Print button is now available in the Stakeout View before storage screen.

To print, turn on the printer and tap Print. When you tap Print the controller connects to the P4T using the Bluetooth wireless connection you have set up, and then prints the label.

P4T printer label layout

Printer layout is user-configurable through *.lbl files. The *.lbl file defines the information to print including additional items such as company logos, static text, and date and time. The *.lbl file also defines the appearance of the printed information, such as font size and the position of logos.

The deltas shown in the Stakeout View before storage screen depend on the entity being staked, options configured and the selected Staked deltas format selected. A display format must have a print style associated with it for the Print softkey to be available. Because of this complexity, Trimble has developed printer formats only for point, line and arc stakeout when the selected Staked deltas format is the "Default" format. To print from any of the other staked delta formats you must define your own print format .lbl file.

For more information, go to www.trimble.com/Survey/Trimble-Access-IS.aspx and click Downloads.

Entering quadrant bearings

1. Make sure the system units are quadrant bearings. For more information, see Units.
2. Enter the bearing in any Bearing field.
3. Select NE, NW, SE, or SW from the popup list. The quadrant bearing is inserted in the field.

Example

To enter the quadrant bearing N25° 30' 30"E in a bearing field:

- Key in 25.3030.
- Select NE from the popup list.
Calculator

To perform a calculation from within a dialog field:
1. Select Calculator from the pop-up menu.
2. Enter the numbers and functions.
3. Tap = to calculate the result.
4. Tap Accept to return the result to the field.

When accessing the calculator with the pop-up arrow, if the numeric field already contained a number that number is automatically pasted into the calculator. At the end of the calculator operations the last solution is pasted back into the numeric field when Accept is selected.

Tip - To use the calculator at any time, select Cogo / Calculator from the main General Survey menu.

Troubleshooting

Bluetooth wireless technology issues
Communication issues
GNSS survey issues
Job data issues
Tilt issues
Conventional survey issues
Trimble SX10 scanning total station instrument errors

Bluetooth wireless technology issues

The message "Connection failed" appears when you try to connect to a Bluetooth cellular modem.

Some cellular modems have different Bluetooth modes. If the mode is set to [Off] or [Automatic], a "Connection failed" message may appear. For a successful Bluetooth connection, set the mode to [On].

The message "Hardware Error 1" appears when you tap [Scan] in the [Bluetooth Device Properties] applet.

Clear, then re-select the [Enable Bluetooth] check box.

Bluetooth controller does not always find all the Bluetooth devices within the specified range

A Bluetooth scan cannot always find other Bluetooth devices during the scan if there is another Bluetooth device scanning in the same area. If the device you are looking for is not found during a scan, wait a minute, and then scan again.
Bluetooth device not registered

If this message appears when you start an internet RTK survey, you have selected Internet connection as your rover radio when you are using a Trimble Internal mobile internet module. You must select Trimble receiver internal as your rover radio and set the method to Mobile internet.

Bluetooth scan finds a [(null)] device

Sometimes during a Bluetooth scan, a Bluetooth device within range is found, but not the device name. In this case, a [(null)] name is returned. Re-scan for the device until the correct name is returned.

Bluetooth operating range difficulties

Bluetooth has an operating range of 10 meters (~33 feet).

Bluetooth [Scan] cannot find the Trimble receiver

If the Bluetooth connection between the receiver and a Trimble CU has been disrupted, or if the receiver is already connected to another Bluetooth device, [Scan] may fail to find the receiver. Switch off the receiver, then switch it on again. Enable the [Enable Bluetooth] check box if it has been cleared and do another scan. If the [Scan] still cannot find the receiver, perform a warm boot on the receiver. Do another scan.

Intermittent communication errors when using Bluetooth

Make sure that your body does not block the line-of-sight between the two devices that are communicating with Bluetooth.

Communication issues

Modem is not responding

This message may appear after a Connecting to modem dialog has to be canceled because it goes on indefinitely. If this happens, power cycle the modem.

If you see the "Modem is not responding" message when connecting to an Enfora GSM/mobile internet card, you may need to set the baud rate. To do this:

1. On the controller, tap [Start / Settings / Connections].
2. Tap the [Connections] icon and then select [Manage existing connections] under [My ISP].
3. Select the connection name for the Enfora card that you created earlier, and tap [Edit].
4. Tap [Next] twice and then tap [Advanced].
5. Set the [Baud rate] to 115200.
6. Tap [Ok] and [Finish] as required to exit the Enfora configuration.

No communication between instrument and the General Survey software

Check the cables, connections and switches. Also check the power source to the receiver or conventional instrument.

Note - Make sure that you have selected an appropriate survey style.
Not receiving radio
Check that all radio cables are connected to the correct ports and that the radio is switched on.
Check that the radios are configured correctly in the Survey Style.
Check that there are no obstructions (for example, trees or buildings). If there are, move to a place where the radio signals will not be obstructed.
Check that the base radio is switched on.

GNSS survey issues
"Error: Outside usage region" message appears when starting a survey
If this message appears, the connected receiver is unable to be used in the current geographic location. For more information, contact your Trimble distributor.

"Receiver supports Location RTK precisions, set Style tolerances accordingly" message appears when starting an RTK survey
If this message appears, the connected receiver supports Location RTK, which limits the precision of the RTK solution in the receiver. Tap Yes to change the survey style precision settings to match the Location RTK precision limit of the receiver. If the survey style is already set to a higher precision than the Location RTK precision limit of the receiver, then the survey style is not updated.
When the receiver has Location RTK enabled, the status line shows RTK: Float. You cannot store fixed positions when Location RTK is enabled in the receiver.
Tap No to keep the current survey style precision settings.

Initialization lost because of high RMS
The receiver has discarded the current initialization because the measurement RMS has stayed too long above an internal cut-off value. This may be caused by too much pole movement when static, by a very bad environment, or by incorrect initialization with pre version 4.00 receiver firmware.
Check two or three points measured with the initialization that was lost. To do this, reinitialize in a good environment and then remeasure the points. If the remeasurements agree within RTK tolerances, you can be confident that the initialization was correct and that a bad environment caused the loss of initialization.

"Cannot start streamed corrections" message during an RTK survey
Make sure that the Internet connection you are using works outside of General Survey. Connect to the Internet, browse one or two websites, and use Google.com or similar. Leave that connection open and start a survey with General Survey. If the survey still fails to start correctly, there may be a problem with the IP addresses or port numbers in the style, or the base station providing the data may not be operational.

"No Base Data" during an RTK survey
If you start an RTK survey and the No base data message appears, check the broadcast format, the initialization string for your modem, the IP address, and the port number of the base.
"No Carrier" message when dialing up an RTK base
This message means that the base is not answering, or that the rover cannot get a dial tone. Call the base manually to make sure that it answers, and is not going to a voicemail system. Check that the rover has enough money on its account.

"Warning: Base coordinates different. Coordinates of base point <Point name> in job differ from received coordinates" message when receiving RTK corrections
This message appears when the point name of the base received from the base data link is the same as a point name already in the job file, and the two points have different WGS84 coordinates. If you are certain that the base is set up on the same point as the one already in the job database, then tap Job to use the job database coordinates for the point. If the base is in a different location to the point already in the job database, then you must change the point name. Tap Received to use the coordinates received from the data link and rename the new base point. Tap Cancel to cancel the survey.

Note - If you have an RTK-RTK offset in the job, you will not be given the choice of using the received coordinates for the base. Correct use of the offset relies on all RTK being in the same terms, and if the point with different coordinates to those already in the job comes from the base this could mean the RTK is not in the same terms.

No data recorded in receiver
Check the Base and Rover options in the survey style. Is the logging device set to Receiver? Is the antenna connected? Is power connected?

Receiver does not turn on
Check the cables, connections, and switches. Also check the power source.

RTK survey will not work
Check that you have selected an RTK Survey Style. Check that it is configured for RTK in the Type field in both the Base and Rover options. Check that the antenna is configured correctly in the Antenna Type field in Base and Rover options. Check that the radio is working and that it has been configured correctly.

RTK precisions are too high
If the RTK survey is initialized, remain stationary on the point for a while and wait for the precisions to decrease. If the RTK survey is not initialized, move to a better environment or try a known point initialization.

Satellite/s not being tracked
Check that there are no obstructions - look at the azimuth and elevation of the SV in the GNSS / Satellites screen. Check the GNSS antenna connections. Check the elevation mask setting. Check that the satellite is not disabled - tap Info in the Satellites screen. Are there any transmitting antennas nearby? If there are, reposition the GNSS antenna.
OmniSTAR not converging

If the OmniSTAR solution is not converging as expected, you may need to wait longer for this to happen. If you measured an OmniSTAR offset when the precision estimates were high, or chose to use an offset with high precision estimates, then the OmniSTAR solution may not converge as expected.

Job data issues

No coordinates in Review

Check the Coordinate view setting. To change the coordinate view settings, do one of the following:

- From the Jobs menu, tap Review job. Open the point record and then tap Options.
- From the Key in menu, tap Points and then tap Options.

To see grid coordinates in review, this setting must be grid. Also, to display grid coordinates, a projection and datum transformation must be defined.

In conventional surveys, check that the instrument and/or backsight point has been coordinated.

In conventional surveys, an observation is displayed with null coordinates until the observation to the backsight is stored.

No grid coordinates

Check that a projection and datum transformation have been defined. Also check that the Coordinate view setting is Grid.

To change the coordinate view settings, do one of the following:

- From the Jobs menu, tap Review job. Open the point record and then tap Options.
- From the Key in menu, tap Points and then tap Options.

Tilt issues

Excess tilt

Adjust the pole angle to be within the tilt tolerance. Alternatively, increase the tilt tolerance. Only applicable when using an instrument with a tilt sensor.

If you choose to continue and store a point outside the tilt tolerance, a warning record is associated with the point.

Conventional survey issues

Conventional instrument behaving erratically

Set the HA VA status rate to Never if the instrument screen blinks erratically or has problems maintaining communication with the General Survey software. Some instruments cannot support a high status update rate.
Conventional instrument will not connect

Always select the correct survey style in the General Survey software before connecting the controller to a conventional instrument. Otherwise, they may fail to connect. If this occurs, reset the conventional instrument by switching it off and then on, and then try to connect again.

Trimble SX10 scanning total station instrument errors

If Trimble Access has a communication issue with the Trimble SX10 scanning total station or detects an instrument error, an instrument error message is displayed.

Dealing with an instrument error

If an instrument error appears, Trimble recommends downloading the error log from the connected Trimble SX10 scanning total station and sending the error log to your Trimble distributor for analysis.

To resolve the error:
1. Power off the instrument completely.
2. Restart the Trimble Access software.
3. Power on the instrument. If the instrument error does not return, you may safely continue using the instrument.
4. If the instrument error reappears, make sure that:
 - The Trimble SX10 scanning total station has the latest firmware version installed. To view the installed firmware version, from the General Survey menu, tap Instrument / Instrument settings.
 - The controller is running the latest version of the Trimble Access software. To view the version number of the software installed on the controller, tap the Trimble button in the Trimble Access task bar or in the task bar of the application you are currently running, and then select About from the drop down menu.

 To check for later versions of instrument firmware or Trimble Access software, refer to the Trimble Geospatial Software and Firmware Latest Releases document.
5. If required, update the firmware and software to the latest version. If the instrument error does not return, you may safely continue using the instrument.
6. If you are running the latest firmware and software and you still see the error, you may need to send the instrument to a certified service center for assessment. Contact your Trimble distributor to discuss how to do this.

Downloading the error log

1. Close all Trimble Access applications except the Trimble Access launcher.
2. Connect the Trimble SX10 scanning total station to the tablet using the 2.5m HIROSE 6P-PC to USB 2.0 cable (P/N 53099032).
 Tip – You could connect using a Wi-Fi connection, but the cable connection will be faster.
3. In the Trimble Access launcher screen, tap SX10 Log. The SX10 Log utility opens on the tablet.
2 General Operations

4. To connect the utility to the instrument:
 a. Tap *Scan* to scan for the connected instrument.
 b. If the connected instrument is not automatically selected in the *Instrument* field, select it from the list.
 c. Tap *Connect* to connect to the instrument.

5. Tap **Download log files**.
 You are prompted to select the folder where the downloaded zip file will be saved. The default location is C:\ProgramData\Trimble\TrimbleData\System files.

6. When the download is complete, tap **Open log folder**.

7. Create a new zip file containing the SX10 log file zip file you just downloaded, as well as the SC.log file in the C:\ProgramData\Trimble\TrimbleData\System Files folder.

8. Send the zip file you created to your Trimble distributor for analysis, along with a detailed description of the steps that occurred before the instrument error appeared.

9. To clear the contents of the log file, tap **Clear logs** and then tap **OK** to confirm.
Job Operations

Jobs menu

Use this menu to view and manage jobs, and transfer data between the office computer and external devices.

For more information, see:

- New job
- Open job
- Properties of job
- Review job
- Point manager
- QC Graph
- Map
- Copy between jobs
- Import/Export
- Copy job files to
- Copy job files from

Managing jobs

A job can contain several different surveys. Select a job before you measure any points or make any calculations.

Jobs can be saved in your <username> folder, or in a project folder in the <username> folder.

Jobs that are defined in one Trimble Access application, for example, General Survey can be used in another application, for example, Roads.

The easiest way to create a job is to create a job from a template. A template is a collection of job properties. You can create a template from an existing job. For more information on creating templates, see Templates.

In this topic:

- Creating a job
Creating a job

1. From the main menu, tap Jobs / New job.
2. Enter a name for the new job.
3. Tap 📷 to create a new project folder or select an existing folder.
4. Select a Template from the drop down list. If the template was created from a job that you have previously set up, all of the job properties are copied from the template.
5. Define/edit the following properties of the job, as required:
 a. Tap the Coord. sys. button and choose a coordinate system for the job. Tap Next.
 b. Configure the coordinate system settings required for the job and tap Store.
 c. Tap the Units button to specify the units and various other settings for the job. Tap Accept.
 d. Tap the Linked files button to select a linked file(s) for the job. Tap Accept.
 e. Tap the Active map button to select an active map file(s) for the job. Tap Accept.
 f. Tap the Feature library button to associate a feature library with the job. Tap Accept.
 g. Tap the Cogo settings button to set the cogo settings for the job. Tap Accept.
 h. Tap the Additional settings button to set additional settings for the job. Tap Accept.
 i. Tap the Media file button to set the media settings for the job. Tap Accept.
 j. Optionally, tap the Page down button to enter Reference, Description and Operator details, and any Notes.
6. Tap Accept to save the job.

Opening a job

1. From the main menu, tap Jobs / Open job.
2. Tap ☐ to expand a folder and display the files within the folder.
3. Tap the job name, or highlight the job name and tap OK.
 The job name appears in the title area of the main menu.

 Note – If the job you are opening has no defined project height, the Project height screen appears. Key in the project height, or tap Here to define the height using the current GNSS position. If there is no position available, the Here button is disabled.

Manually copying a job

To easily copy specific items from one job to another, select Jobs / Copy between jobs.
To copy a job and associated job files collected during the survey (for example, image and scan files) to a new location, select Jobs / Copy job files to.

To manually copy a job:
1. From the main menu, tap Jobs / Open job.
2. Highlight the name of the job to be copied and tap 📐.
3. Browse and highlight the folder to paste the file into and tap 📐.

Note – When you manually copy a job to another folder, associated files (for example, *.t02, *.tsf, *.jpg) are not automatically copied.

Deleting a job
1. From the main menu, tap Jobs / Open job.
2. Tap 📊 to expand a folder and display the files within the folder.
 - If the job you want to delete is not highlighted, use the arrow keys to highlight it, or tap and hold it with the stylus.

 Note – If you tap with the stylus without holding, the job that you highlight opens automatically.
3. Tap ✗ to delete the file.
4. Tap Yes to confirm deletion, or No to cancel.

Note – When you delete a job, all associated files (for example, *.t02, *.tsf, *.jpg) are automatically deleted.

You can also use:
- [Fn + Del] on the TSC3 controller or [Ctrl + Del] on the Trimble CU/Trimble tablet to delete jobs from the File / Open dialog.
- Windows/File Explorer to copy, rename, or delete a file.

File management

All project files are saved to the selected project folder, or to auto-generated subfolders inside the selected project folder. The default project folder is the Trimble Data <username> folder. The <username> folder is created the first time you log in to the Trimble Access application.

If required, you can create individual project folders inside the <username> folder. Auto-generated folders are then created as required, inside the <username>\<projectname> folder.
Different types of files are stored in different folders on the controller:

<table>
<thead>
<tr>
<th>Folder</th>
<th>File type</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>\Trimble Data\System Files</td>
<td>System</td>
<td>Custom export style sheets (.xsl), Feature libraries (.fxl), Geoid (.ggf), and Survey styles (.sty)</td>
</tr>
<tr>
<td><project> folder: \Trimble Data<username> or <username><projectname></td>
<td>Project</td>
<td>Jobs (.job), Control files (.csv), Maps (.dxf, .str, .shp), Alignments (.rxl, .txl)</td>
</tr>
<tr>
<td><project><jobname> Files</td>
<td>Project</td>
<td>Image and media files (.jpg), Scan files (.tsf), GNSS data files (.t01, .t02), Broadcast RTCM transformation files (.rtd)</td>
</tr>
<tr>
<td><project><jobname> Files\Original Files</td>
<td>Project</td>
<td>Original image files (.jpg)</td>
</tr>
<tr>
<td><project><jobname> Files\SdeDatabase.rwi</td>
<td>Project</td>
<td>Scan files (.rwcx)</td>
</tr>
<tr>
<td><project><jobname> Files\V10 Panorama Files</td>
<td>Project</td>
<td>V10 image files, including calibration files (.jpg)</td>
</tr>
<tr>
<td><project>\Export</td>
<td>Exported</td>
<td>Htm reports (.htm) and Comma delimited files (.csv)</td>
</tr>
</tbody>
</table>

All system type files are stored in the System Files folder. System files cannot be accessed if they reside in another folder.

Use the Copy job files to and Copy job files from functions to easily copy jobs and associated files from one folder to another, or from one controller to another using an external drive such as a USB stick. When you use Copy job files from, jobs are copied into the current <username> folder on the controller.

When you create files using Export fixed format files or Export custom format files, you can save the new format files to an existing folder on the controller, or create a new one. The default folder is the Export folder inside the current project folder. If you change the project folder, the system creates an export folder inside the new project folder, and gives it the same name as the previous export folder. Tap to select an existing folder or create a new one.
The file extension on the office computer, the file extension on the controller (which changes if the file is converted during transfer), the file description, and the location the file is saved to, are as follows.

<table>
<thead>
<tr>
<th>File type:</th>
<th>Folder the file is saved to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer file extension</td>
<td>Controller file extension</td>
</tr>
<tr>
<td>.dc</td>
<td>.job</td>
</tr>
<tr>
<td>.csv</td>
<td>.csv</td>
</tr>
<tr>
<td>.txt</td>
<td>.txt</td>
</tr>
<tr>
<td>.dtm</td>
<td>.dtm</td>
</tr>
<tr>
<td>.ttm</td>
<td>.ttm</td>
</tr>
<tr>
<td>.fxl</td>
<td>.fxl</td>
</tr>
<tr>
<td>.fcl</td>
<td>.fal</td>
</tr>
<tr>
<td>.sty</td>
<td>.sty</td>
</tr>
<tr>
<td>.ddf</td>
<td>.fal</td>
</tr>
<tr>
<td>.gdf</td>
<td>.gdf</td>
</tr>
<tr>
<td>.cdg</td>
<td>.cdg</td>
</tr>
<tr>
<td>.pjg</td>
<td>.pjg</td>
</tr>
<tr>
<td>.sgf</td>
<td>.sgf</td>
</tr>
<tr>
<td>.pgf</td>
<td>.pgf</td>
</tr>
<tr>
<td>.rtd</td>
<td>.rtd</td>
</tr>
<tr>
<td>.dxf</td>
<td>.dxf</td>
</tr>
<tr>
<td>.str</td>
<td>.str</td>
</tr>
<tr>
<td>.shp</td>
<td>.shp</td>
</tr>
<tr>
<td>.ini</td>
<td>.dat</td>
</tr>
<tr>
<td>.lng</td>
<td>.lng</td>
</tr>
<tr>
<td>.wav</td>
<td>.wav</td>
</tr>
<tr>
<td>.t01</td>
<td>.t02</td>
</tr>
<tr>
<td>.crd</td>
<td>.inp</td>
</tr>
</tbody>
</table>
File type:

<table>
<thead>
<tr>
<th>Computer file extension</th>
<th>Controller file extension</th>
<th>Description</th>
<th>System Files</th>
<th><project></th>
<th><jobname> Files</th>
</tr>
</thead>
<tbody>
<tr>
<td>.xml</td>
<td>.xml</td>
<td>LandXML road files or XML Documents</td>
<td>-</td>
<td>*</td>
<td>-</td>
</tr>
<tr>
<td>.xml</td>
<td>.xml</td>
<td>GNSS Contacts file [GNSSContacts.xml]</td>
<td>*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>.jxl</td>
<td>.jxl</td>
<td>JobXML files</td>
<td>-</td>
<td>* 1</td>
<td>-</td>
</tr>
<tr>
<td>.ixl</td>
<td>.ixl</td>
<td>Custom ASCII Import file definitions</td>
<td>*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>.xsl</td>
<td>.xsl</td>
<td>XSLT Custom ASCII Export Stylesheet files</td>
<td>* 3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>.sss</td>
<td>.sss</td>
<td>XLST Custom Stakeout Stylesheet files</td>
<td>* 3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>.mcd</td>
<td>.mcd</td>
<td>Measure Codes Database files</td>
<td>*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>.dc</td>
<td>.rxl</td>
<td>Trimble road file</td>
<td>-</td>
<td>*</td>
<td>-</td>
</tr>
<tr>
<td>.rxl</td>
<td>.rxl</td>
<td>Alignment files</td>
<td>-</td>
<td>*</td>
<td>-</td>
</tr>
<tr>
<td>.txl</td>
<td>.txl</td>
<td>Tunnel file</td>
<td>-</td>
<td>*</td>
<td>-</td>
</tr>
<tr>
<td>.csd .csw</td>
<td>.csd</td>
<td>Coordinate System Database files</td>
<td>*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>.jpg</td>
<td>.jpg</td>
<td>Image files</td>
<td>-</td>
<td>-</td>
<td>* 4</td>
</tr>
<tr>
<td>.bmp</td>
<td>.bmp</td>
<td>Screendump files</td>
<td>-</td>
<td>* 5</td>
<td>-</td>
</tr>
<tr>
<td>.tsf</td>
<td>.tsf</td>
<td>VX or S series scan files</td>
<td>-</td>
<td>-</td>
<td>*</td>
</tr>
<tr>
<td>.rwcx</td>
<td>.rwcx</td>
<td>SX10 scan files</td>
<td>-</td>
<td>-</td>
<td>*</td>
</tr>
<tr>
<td>.scprf .scprf</td>
<td>.scprf</td>
<td>Trimble Access profile file</td>
<td>*</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Note

1. `.csv`, `.txt` and JobXML (.jxl) files that are transferred to the controller should be transferred to the project folder. Files that are exported on the controller are stored in the Export folder inside the project folder. To link an exported `.csv` file, copy the file into the project folder using Explorer.

2. Language files (.lng) and Sound files (.wav) are stored in the appropriate language folder.
3. **Stakeout stylesheet files (.sss) and Custom Export stylesheet files (.xsl) can be located in both the language folder or System Files. Translated Stakeout stylesheet files and translated Custom Export stylesheet files are typically stored in the appropriate language folder.**

4. **When you draw on or annotate an image and select the Save original image option, the original image is saved to the `<project>\<jobname> Files` folder.**

5. **Screen dump files save an image of the current screen. To create a screen dump, press the Ctrl + S keys on the controller, or tap the Ctrl + $ keys on the onscreen keyboard.**

6. **To create new project folders or move files from one folder to another, use the General Survey software or Windows Explorer.**

Job repair wizard

The Job repair wizard runs when General Survey detects damage in the job file. You can cancel the wizard at any point or go back to any previous step.

The wizard retrieves job data up to the point of the damage, discards anything beyond this point, and informs you of the time and date of the last good item in the job.

As a safety measure, the wizard can make a copy of the job before anything is discarded. Before proceeding with the copy, check that the file system has enough space for a copy of the entire job. Once the repair is completed, use Jobs / Review job to check what (if anything) has been discarded from the end of the job. Because the job is stored in chronological order, anything discarded is timed later than the last good record reported by the wizard.

Be aware that discarded data may include changes made to the job such as deletions (the item may no longer be deleted), changes to antenna or target heights, coordinate systems, and new items such as points, observations, and lines.

Damage to Job files may be caused by a hardware problem, a failure to properly shut down the General Survey program, or an unexpected power failure due to a flat battery. When the Job wizard reports a problem, review the controller’s operating procedure, and/or check the hardware. If you repeatedly experience corruption problems, there may be a fault in your controller hardware. For more information, contact your local Trimble reseller.

Reviewing and editing job properties

Use this menu to configure settings for the current job.

For more information, see:
- Coordinate system
- Units
- Linked files
- Active map files
- Feature library
- Cogo settings
- Additional settings
Media file
Each button displays the current settings. When you create a new job, settings from the previous job are used as the defaults. Tap a button to change the settings.
Tap Accept to save any changes.

Tip To set default values for the Reference, Description, Operator, or Notes fields, or to set these fields as "required" so that values must be entered in these fields, copy the JobDetails.scprf file in the Trimble Data \ [System] folder to an office computer and modify the file using a text editor. Then copy the file to the controller. The settings in the JobDetails.scprf file are read each time the Trimble Access application is run. For more information on editing the file, refer to the notes provided at the top of the JobDetails.scprf file.

Reviewing data stored in the job
To see the records stored in the job database:
1. From the main menu, tap Jobs / Review job.
2. Use the arrow keys, stylus, or softkeys to navigate the database.
 - To move to the end of the database quickly, highlight the first record and press the up arrow key.
 - To highlight a field without selecting it, tap and hold briefly with the stylus.
3. To see more information about an item, tap the record. Certain fields, for example, Code and Antenna height, can be edited.

Note –
 - For points measured using a GNSS receiver with an integrated tilt sensor, the following records are available:
 - Warnings: The Warnings section shows which warnings were given during the occupation when the point was being measured.
 - Conditions: The Conditions at storage section shows the error conditions that were present at the time the point was stored.
 - For points that have panoramas captured with them, tap the photo station record to view the Panorama or SX10 Panorama screen. When reviewing a panorama captured using a Trimble total station with VISION technology and with the HDR option enabled, the image first shown in the review screen is the image captured using the middle, or normal, exposure. Tap > Over to view the over-exposed image. Tap > Under to view the under-exposed image. Alternatively, tap the arrow softkeys or the arrow controller keys to cycle through all of the images. Panoramas captured using the V10 imaging rover with the HDR option enabled only show one image in the Review screen as the HDR processing is done in the camera head immediately after image capture.
 - Panoramas that you delete are permanently deleted.
 - Offset points that are stored as coordinates are not updated when you change an antenna or target height record in the database. In addition, a change in antenna height does not affect any postprocessed points that will be processed using the Trimble Business Center software.
Verify the antenna or target height information when you transfer the data to the office computer or transfer postprocessed points directly from the receiver to the office software.

When you change an antenna or target height record in the database, stakeout deltas, Cogo points, averaged points, calibrations, resections, and traverse results are not automatically updated. Re-observe staked out points, and re-calculate Cogo points, averaged points, calibrations, resections, and traverses.

- To search for a particular item, tap Search and select an option.

Tip - To review features from the Map screen, select the required feature(s), tap and hold on the screen and choose Review from the shortcut menu.

Changing the coordinate view display in Review job

1. From the main menu, tap Jobs / Review job.
2. Use the arrow keys, stylus, or softkeys to navigate the database.
3. Do one of the following:
 - Tap + to expand the point tree list.
 To change the coordinate display, tap one of the ordinates and then select the appropriate coordinate view from the list.
 - Tap the point name to view details about the point.
 To change the coordinate view, tap Options.
 If you selected Grid (local), select the Transformation for grid (local) display name. This transformation transforms the grid coordinates to Grid (local) coordinates using the selected transformation.
 Unless the transformation selected here is the same as the input transformation, the Grid (local) coordinates shown will not match the original Grid (local) coordinates. To see the original Grid (local) coordinates, set the Coordinate view to As Stored.
 Transformation (as stored) is displayed when reviewing Grid (local) and the Coordinate view is set to As Stored.
 Transformation (display) is displayed when reviewing Grid (local) and the Coordinate view is set to Grid (local).

Tap Stakeout beneath the corresponding Point name to reveal the as-staked delta information.

Occupation warnings

Each point measurement in Review records if excess movement, excess tilt, and poor precision tolerance warnings were displayed during the occupation of the point, and if any of those tolerances were exceeded at the critical time when the point was stored.

To view the occupation warnings records, go to page 4 of the point record. The Warnings section shows the warnings that were given during the point measurement. Excess tilt, excess movement, and poor precision warnings that were displayed during the time the point was being measured show Yes, those that were not displayed show No. On page 5 the Conditions at storage section shows if excess movement, excess tilt or poor precision warnings were being displayed at the time.
the point was accepted and stored. The conditions at storage have a major impact on the measured coordinates of the point.

Viewing and editing media files

To view a media file:
1. Highlight a media file record.
 - To highlight a field without selecting it, tap and hold briefly with the stylus.
2. Tap Details. The image appears.
3. To change the *Link to* method and the name of any linked point, tap the *Link* softkey.
 - To remove the link to the job or a point, select *None*. The media file remains in the user name folder.
 Note – If the image includes an information panel and you edit values defining the measured point for the image such as the code and descriptions, the information panel is not updated if you change the method and point name.
4. To mark up an image, tap *Draw*.

Inserting notes

To store a note in the database:
1. Highlight a record.
2. Tap Note. The *Note* screen that appears displays the date and time that the current record was created.
3. Enter the note and then tap Accept. The note is stored with the current record. In *Review job*, the note appears below the record with the note icon.

Editing target/antenna records

Editing target/antenna records using Review job

Select *Review job* to edit existing antenna or target height records. These edits change the antenna or target height for all observations using that antenna or target height.

To edit a target/antenna record:
1. Tap the target/antenna record. The current target (conventional survey) or antenna (GNSS survey) details appear.
2. Enter the new details and then tap Accept.
 - The current record is updated with the new details, which apply to all subsequent observations using that record.
 - A note with a timestamp is attached to the record. This note documents the old details, including when the changes were made.
Editing target/antenna records using Point manager

Use Point manager to easily change the target or antenna height of a single observation or any number of observations.

Editing codes

Editing codes using Review job

If you have only a single code to edit, you can use Review job.

To edit a code:
1. From the main menu, tap Jobs / Review job.
2. Tap the observation record that contains the code you want to edit.
3. Change the code and then tap Accept to store the changes.

The Note stored with the observation is a record of the old code and the date and time it was modified.

Editing codes using Point Manager

You can use Point manager to edit single or multiple codes. When you edit multiple codes, the Point manager is easier to use than Review job.

For more information, see Point manager.

Editing point names and point coordinates using Point Manager

You can use Point manager to edit point names or point coordinates. You cannot edit point names and point coordinates using Review job.

Deleted points, lines, and arcs

A deleted point, line, or arc is not used in calculations, but it is still in the database. Deleting points, lines, or arcs does not make a job file smaller.

When you transfer a file that contains deleted points, the deleted points are not transferred to the office software. If you transfer a file using the Trimble Data Transfer utility, however, the deleted points are recorded in the Data Collector (.dc) file. They have a classification of Deleted.

Some points, such as continuous offset points and some intersection and offset points, are stored as vectors from a source point. If you delete a source point, any point stored as a vector from that point has null (?) coordinates when you review the database point record.

Deleting a point, line, or arc in the General Survey database

1. From the main menu, tap Jobs / Review job.
2. Highlight the point, line, or arc to be deleted and tap Details.
3. Tap Delete. For points, the search class changes to Deleted (normal), Deleted (control), Deleted (staked), Deleted (backsight), or Deleted (check), depending on the original search classification.
4. Tap Accept. The General Survey software records a note with the original point, line, or arc record, showing the time it was deleted.

When you delete a point, line, or arc, the point symbol changes. For example, for a topo point, the \bigcirc symbol replaces the \times symbol.

When you delete an observation that has been recorded during a Station setup plus, a Resection, or Measure rounds operation, the mean turned angle records and station or round residuals records will not be updated. Deleting an observation that has been used to compute an average does not automatically update the average. Use COGO / Compute average to recompute the average.

Note – You cannot delete points from a linked file.

Use Explorer to delete alignment files, road files, map files, or any other file type stored on the controller.

To restore a point, line, or arc in the General Survey database:
1. From the main menu, tap Jobs / Review job.
2. Tap the point, line, or arc record to be restored.
3. Tap Undelete.
4. Tap Accept.

Deleting features from the Map screen

1. Select the required feature(s) using one of these options:
 - Tap the feature(s).
 - Drag a box around the feature(s).
 - Tap and hold on the screen and then choose Select from the shortcut menu.
2. Tap and hold on the screen and then choose Delete from the shortcut menu.
3. Select the feature(s) to delete and then tap Delete.

Note – You cannot delete points, lines or arcs from a linked map file (for example, a DXF or SHP file).

Managing data in the Point manager

As an alternative to Review job, use the Point manager to manage your data.

You can easily review:
- Point coordinates
- Observations
- The best point and all duplicate points
- Target and antenna heights
- Codes and notes
- Descriptions
- Notes
You can easily edit:

- Target and antenna heights (single or multiple)
- Point names
- Point coordinates
- Codes (single or multiple)
- Descriptions (single or multiple)
- Notes

Using Point manager

To open *Point manager*, select *Jobs / Point manager* from the main menu. The screen that appears shows a tabulated tree structure of all points and observations in the job database and linked files.

Viewing the data

When there are duplicate points of the same name, the best point always appears first. All occurrences of points of the same name, including the best point, appear in a list below the best point.

However, when the data is in the *Target height* view, all observations in the database appear in the order that they occur in the database.

To change the view of the data, select *Display*. For example, to view coordinates, set *Display* to Grid; to view or edit target heights, set *Display* to *Target height*.

Note – In *Point manager*, the *Target height* setting refers to both antenna height and target height.

To sort the data, tap the column heading.

To change the width of the column, or to hide the column, tap and drag the separator between headings.

To shrink an empty column double tap the separator to the right of the column.

Use the scroll bars to scroll horizontally or vertically through the data.

Tip - To freeze the Point name column, tap and hold the Point name column heading. To unfreeze the column, tap and hold the heading again.

To control whether deleted points are shown, tap *Options* and then select or clear the *Display deleted points* check box. Note that a wildcard search in Point Manager cannot display deleted points if the display of deleted points has been disabled.

Filtering data using wildcard searching

To filter the displayed information using wildcard matching, tap \mathcal{V}. The screen that appears contains *Point name*, *Code*, and *Note* fields and, if enabled, two *Description* fields.

To filter the fields appropriately, use * (for multiple characters) and ? (for a single character). The filters specified for the separate fields are processed together and only points that meet the criteria of all the filters will appear. Use * in any field that you do not want to filter. Filtering is not case sensitive.
Filter examples:

<table>
<thead>
<tr>
<th>Point name</th>
<th>Code</th>
<th>Descr. 1</th>
<th>Descr. 2</th>
<th>Note</th>
<th>Example results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>1, 10, 2001, 1a</td>
</tr>
<tr>
<td>1*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>1, 10, 1a</td>
</tr>
<tr>
<td>1?</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>10, 1a</td>
</tr>
<tr>
<td>1 Fence</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td>All points with a name that contains a 1 and where code = Fence</td>
</tr>
<tr>
<td>1 Fence*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td>All points with a name that contains a 1 and a code that contains Fence</td>
</tr>
<tr>
<td>1???</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>wrong*</td>
<td>All points with a name that starts with 1 and is 4 characters long and a note that starts with wrong</td>
</tr>
<tr>
<td>*</td>
<td>Tree</td>
<td>Aspen</td>
<td>25</td>
<td></td>
<td>All points where code = tree and Description 1 = Aspen and Description 2 = 25</td>
</tr>
</tbody>
</table>

To disable the filter, tap Reset, or set all fields to *.

Filter settings are remembered, but are not applied if Point manager is closed. To reactivate filter settings, tap \(\checkmark \) and then tap Accept.

To view more information on a point do one of the following:

- To reveal all associated points and observations, tap + to expand the point tree list. Expand the subtree to view individual point information. These records can include the point coordinates, observations, antenna or target details, and quality control records.
- To open the same point form as seen in Review job, tap a point, or highlight a point and tap Details. This allows you to edit information such as the point code and attributes.

To change the format of the indented coordinates or the observations that appear when you expand the point tree, tap the coordinates or observations displayed, or highlight them and press the space key. In the list that appears, select the new data view. This allows you to review the raw conventional observations (or WGS-84 observations) and the Grid coordinates at the same time.

Using Grid (local) in the Point manager

You can use Point manager to view Grid (local) coordinates using the input transformation or a display transformation.

1. From the main menu, tap Jobs / Point manager.
2. Tap Display and then select Grid (local).
3. To select the Grid (local) transformation for coordinate display, or to create a transformation, select Options.
4. Do one of the following:
To view the original Grid (local) values, select Display original grid local and then tap Accept.

To create a new display transformation, select Create new transformation, tap Next and then complete the required steps.

To select an existing display transformation, select Select transformation, select the display transformation from the list and then tap Accept.

Note –

- The 'input' transformation transforms a point from the original entered Grid (local) coordinates to database grid coordinates.
- The 'display' transformation transforms a point, regardless of how it was stored, from the database grid coordinates to display computed Grid (local) coordinates.
- When viewing the original Grid (local), points not stored as Grid (local) appear as null North (local), East (local), and Elev (local).
- When you select a display transformation, all database grid points appear using the current display transformation. If the display transformation is different from the original transformation, the computed Grid (local) coordinates are different from the original entered Grid (local) coordinates.
- A point entered as a Grid (local) point is stored in its original format to the General Survey job as a Grid (local) point. Typically, the input transformation to transform the point to a database grid point is assigned at the time the point is entered, but the transformation can be created at a later stage and then assigned to the point(s) using Point manager.

To change the input transformation:
1. From the main menu, tap Jobs / Point manager.
2. Tap Display and then select Grid (local).
3. Highlight the point(s) stored as Grid (local) whose input transformation you need to change.
4. Tap Edit and then select Transformations.
5. Select the new transformation and then tap OK.
 The new transformation is now used to transform the Grid (local) to database grid.
 If the current view showed the original Grid (local), changing the input transformation does not change the Grid (local) coordinates displayed.
 If the current view showed a different display transformation, changing the input transformation also changes the Grid (local) coordinates displayed.

Using station and offset in the Point manager

You can use Point manager to view points by station and offset relative to an entity such as a Line, Arc, Alignment, Tunnel or Road.
1. From the main menu, tap Jobs / Point manager.
2. Tap Display and then select Station and offset.
3. Select Options.
4. Select the entity type and the entity name and then tap Accept.
Reviewing and editing antenna and target heights

Note – *In Point manager, the Target height setting refers to conventional target heights and the GNSS antenna heights.*

To change a target height record and update all observations using that target height record, edit the target height in **Review job.**

To change an individual target height, or group of target heights, in **Point manager:**

1. From the main menu, tap **Jobs / Point manager.**
2. Tap **Display** and then select **Target height.** In the screen that appears, the point name, from point, target height, code, and note are listed in the order they exist in the database.
 - To change the record order, tap the appropriate column heading.
 - To filter the list, tap **Filter,** select the appropriate column and then enter the filter details.
 Tip - If you enter a filter value of 2 for a point name, the system will show all points with 2 in their name, including 2, 1002, 2099, or 2day. To filter for a point name “2”, select the Match whole word check box.
3. To select a target or multiple targets for editing, do one of the following:
 - Tap the **Target** field.
 - Use the arrow keys to highlight the record to edit and then tap **Edit.**
 - To select multiple fields, press and hold **Ctrl** and then tap the required fields. Then tap **Edit.**
 - To select a range of fields, tap the first required field, press and hold **Shift** and then tap the last required field. Then tap **Edit.**
4. In the **Target details** form enter the new **Target height and/or Prism constant.** To store the changes, tap **OK.**
 When measuring to the bottom notch on a Trimble prism base, tap the advanced pop-up arrow (↑↓) and then select **Bottom notch.**
 Point manager now displays the corrected target details. In **Review job,** view the inserted target records with notes that record the old target details.

Group editing target heights (conventional) and antenna heights (GNSS)

You can use the **Point manager** to edit details of antenna heights or target heights for multiple-selected points. This function is available when the **Display** softkey setting in the **Point manager** is set to **Target height.** Use the standard Windows selection methods of **Ctrl-click** and **Shift-click** to choose the points to apply the target or antenna height edits to.

Tips

- When you edit antenna heights, you can edit the measured heights and the measurement method.
- When you edit target heights, you can edit the measured target height value, the measurement method (when applicable), and the prism constant.
- When you select points to edit, you can include points with target heights and points with antenna heights. When you tap **Edit,** two dialogs appear - one to edit antenna heights and one to edit target heights.
You do not need to select contiguous target and/or antenna heights to edit.
You cannot edit a selection of antenna heights that includes more than one type of antenna. In this case, select and edit the points in separate groups, according to the type of antenna used.
You can edit a selection of different targets. In such a case, the new target heights are applied to each of the different targets but the target numbers remain unchanged.
Some conventional measurements use calculated (system) targets, which have a zero height and zero prism constants, for example, Dual-prism offset. You cannot edit the target heights for system targets.
You can sort Point manager columns to help you find and select groups of target or antenna heights to edit. Tap the column heading to sort that column.
The Point manager automatically inserts the appropriate target and antenna equipment records into the job database to ensure that the correct heights and measurement methods are assigned to each point.
When you edit points, the Point manager automatically inserts notes into the job database to record what was edited, the original measurement data, and the time of the edit.

Editing point coordinates using Point manager
You can use the Point manager to edit the coordinates of imported or keyed in points.
1. From the main menu, tap Jobs / Point manager.
2. To select the record to edit, tap and hold the stylus on the record.
3. Tap Edit and then select Coordinates.
4. Edit the coordinates.
 You cannot edit the coordinates of:
 • raw observations
 • points in linked files
 • a range of records at one time
5. Use the Control point option to change the search class for keyed in points from Normal to Control or from Control to Normal.
6. Tap OK to save the changes.
Details of changes made are automatically saved to the Note record.

Renaming point names using Point manager
You can use the Point manager to edit the names of points and observations.
1. From the main menu, tap Jobs / Point manager.
2. To select the record to edit, tap and hold the stylus on the record.
3. Tap Edit and then select Point names.
4. Edit the name.
You cannot edit the name of
 - points in linked files
 - an observation to the current station if a survey is running
 - a backsight observation
5. Tap OK to save the changes.
Details of changes made are automatically saved to the Note record.

Editing point names and point coordinates in a dynamic database

The General Survey software uses a dynamic database. If you change the name or coordinates of a record, the positions of other records that rely on that record could change or disappear.

The rest of this section describes how changes to a base station position, station setup, or backsight position can affect other positions. In addition to these record types, changes to resections, lines, arcs, compute inverse records, and others may also affect other positions. For more details on specific records that may change, see the table below.

If you rename a point name that is used as a base in a GNSS survey, or as a station setup point in a conventional survey, this does not rename the point name that is referenced in the Base record or Station setup record. You cannot edit the point name referenced in the Base record or Station setup record in any way.

If you rename the base position or station setup position, and another record with the same name does not exist, then the positions of all records that are computed from that base position or station setup position cannot be computed, and those records will no longer be displayed in the map.

If you rename the base position or station setup position, and another record with the same name does exist, then the positions of all records that are computed from that base position or station setup position may change, as they will now be computed from the next best point with the same name.

If you edit the base position or station setup position, then the positions of all records that are computed from that base position or station setup position will change.

If you edit the azimuth in an a station setup with a keyed-in azimuth to the backsight, then the positions of all records that are computed from that station setup will change.

If you edit or rename the point record that is used as a backsight in a station setup with a computed azimuth to the backsight, then the positions of all records that are computed from that station setup may change.

If you select a range of records and change their name, all the selected records are renamed to the new name that you entered.

If you rename or edit the coordinates of points, all records that contain computed deltas to other points, for example as-staked, check, and backsight observations, are not updated.

In the following table, the * symbol against a record type shows the dynamic database records that may change if the name or the coordinates of the record that was used to derive their position is modified.
Job Operations

<table>
<thead>
<tr>
<th>Record</th>
<th>Names</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topo points (GNSS)</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Rapid points</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>FastStatic points</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Observed control points</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>F1 Topo points (Conv.)</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>F2 Topo points (Conv.)</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Mean turned angle</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>As-staked points</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Check points</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Continuous points</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Construction points</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Laser points</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Lines</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Arcs</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Compute inverse</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Resection points</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Adjusted points</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Averaged points</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cogo points (computed) (see note below)</td>
<td>* 1</td>
<td>* 1</td>
</tr>
<tr>
<td>Intersection points</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Offset points</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Roads</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alignments</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tunnels</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Calibration points</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compute area</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1 - Cogo points can change if the point they are computed from is modified, but it depends on how the Cogo points were stored. If they were stored as a vector, for example Az HD VD and the base point is moved, then the Cogo point will also move.
Adding or editing codes using Point manager

To enter a code or change an existing code, tap the Code field. Enter the code details, and the attributes, if required. Tap Accept to store the changes.

To understand assigning attributes to a point, see Using feature codes with predefined attributes.

Group editing codes using Point manager

You can use the Point manager to edit code details for more than one point at a time.

1. Use the standard Windows selection methods; press Ctrl or Shift and tap the records for which you want to change the code.
2. Tap Edit and then select Codes.
3. Enter the new code and then tap Enter.

If the code has attributes, you are prompted to enter them.

The new codes are updated and displayed in the Point manager. A note with the old code value is stored for each modified record.

Tip - You can edit Descriptions in the same way.

Adding or editing notes using Point manager

To enter a note or change an existing note, tap the Note field. Enter the note details and then tap Accept to store the changes.

Coordinate view

You can change the Coordinate view settings when:

- reviewing a point in a job
- viewing a point in the Point manager
- keying in a point

The following table describes the coordinate view options.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WGS-84</td>
<td>View as WGS-84 Latitude, Longitude, and Height.</td>
</tr>
<tr>
<td>Local</td>
<td>View as local ellipsoidal Latitude, Longitude, and Height.</td>
</tr>
<tr>
<td>Grid</td>
<td>View as Northing, Easting, and Elevation.</td>
</tr>
<tr>
<td>Grid (local)</td>
<td>View as Northing, Easting, and Elevation relative to a transformation.</td>
</tr>
<tr>
<td>ECEF (WGS84)</td>
<td>View as WGS-84 Earth-Centered-EarthFixed X, Y, Z coordinates</td>
</tr>
<tr>
<td>Station and Offset</td>
<td>View as station, offset, or vertical distance relative to a line, arc, alignment, road, or tunnel. See Station and offset.</td>
</tr>
</tbody>
</table>
Option Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Az VA SD</td>
<td>View as azimuth, vertical angle, and slope distance.</td>
</tr>
<tr>
<td>HA VA SD (raw)</td>
<td>View as horizontal angle, vertical angle, and slope distance.</td>
</tr>
<tr>
<td>Az HD VD</td>
<td>View as azimuth, horizontal distance, and vertical distance.</td>
</tr>
<tr>
<td>HA HD VD</td>
<td>View as horizontal angle, horizontal distance, and vertical distance.</td>
</tr>
<tr>
<td>Delta Grid</td>
<td>View as differences in Northing, Easting, and Elevation from the instrument point.</td>
</tr>
<tr>
<td>USNG/MGRS</td>
<td>View as USNG/MGRS string (based on the local ellipsoid) and Elevation.</td>
</tr>
</tbody>
</table>

Note - *When keying in a point, and for all options except Grid or Grid (local), the computed grid coordinates are also displayed.*

If the coordinate value when viewing a point is ?, one of the following situations may have occurred:

- The point may be stored as a GNSS point but with the Coordinate view field set to Local or Grid and a datum transformation and projection not defined. To correct this, change the Coordinate view setting to WGS-84, define a datum transformation and/or projection, or calibrate the job.
- The point may be stored as a Grid (local) point and with the Coordinate view field set to Grid, but a transformation has not been defined to convert the Grid (local) to a Grid.
- The point may be stored as a polar vector from a point which has been deleted. To correct this, restore the point.
- In a 2D survey, a projection may have been defined with the project height as null. To correct this, set the Project height to approximate the site elevation.

Station and offset

You can key in or review a point by Station and offset relative to a:

- Line
- Arc
- Alignment
- Tunnel
- Road

If the selected entity has an elevation for the entered station, the elevation for the keyed in point can be defined by a V.dist value applied relative to the elevation of the vertical alignment at that station.

For a road with templates assigned, the V.dist value is applied relative to the resulting cross section at the entered station and offset.

For a tunnel with templates assigned, the V.dist value is always applied relative to the elevation of the vertical alignment at the entered station.
If the Coordinate view is set to Station and offset relative to a road, tunnel, or alignment, then the station and offset for the point is to the intersection point of two horizontal alignment elements when:

- the horizontal alignment includes consecutive elements that are non tangential;
- the point is beyond the end tangent point of the incoming element but before the start tangent point of the next element; and
- the point is on the outside of the horizontal alignment.

The exception to this behavior is if the distance from the point to the intersection point is greater than the distance to another element in the horizontal alignment. In that case, the station and offset for the point is to the closer element.

Where the point is on the inside of the horizontal alignment, then the station and offset is relative to the closest horizontal element.

Where the point is before the start of the horizontal alignment or beyond the end of the alignment, the station and offset for the point is null.

Trimble Access provides an option to use Chainage for the distance term instead of the default Station. To change this setting, see Language.

QC graph

The QC graph screen displays a graph of quality indicators that are available from data in a job. To change the type of data to display, tap Display. To scroll along the graph, use the arrow buttons. To view basic details of a point, tap the graph. For more information, double tap the graph to access Review.

You can view a graph of:

- Horizontal precision
- Vertical precision
- Tilt distance
- Satellites
- PDOP
- GDOP
- RMS
- HA standard error
- VA standard error
- SD standard error
- Elevation
- Target height
- Attributes

Note – Attributes can be filtered by Feature code and Attributes but only feature codes that contain numeric or integer attributes are displayed.

Tap a point to see details for that point. Tap again to review the point.
To aid point selection, tap a point and then tap *Prev* or *Next* from the second row of softkeys to select the previous or next point.

To add a note to a point, tap the bar in the graph to select the point, and then tap the append Note softkey.

To navigate to a point, tap the point and then select *Navigate* from the second row of softkeys.

To define the Y axis range, tap near the Y axis and from the pop-up menu define the *Minimum* and *Maximum* Y axis values.

Inserting notes

To store a note in the database:

1. Highlight a record.
2. Tap *Note*. The *Note* screen that appears displays the date and time that the current record was created.
3. Enter the note and then tap *Accept*. The note is stored with the current record. In *Review job*, the note appears below the record with the note icon.

Storing points

How you record a point determines how it is stored in the General Survey software. Points are stored either as vectors or as positions. For example, RTK points and conventionally observed points are stored as vectors, while keyed-in points, real-time differential points, and postprocessed points are stored as positions.

To review details about a stored point, from the main menu, select *Jobs / Review job*. A point record contains information about the point, such as the point name, the code, the method, the coordinates, and the GNSS data file name. The *Method* field describes how the point was created.

The coordinates are expressed as WGS-84, local, or grid coordinates, depending on the setting in the *Coordinate view* field.

To change the coordinate view settings, do one of the following:

- From the *Jobs* menu, tap *Review job*. Open the point record and then tap *Options*.
- From the *Key in* menu, tap *Points* and then tap *Options*.

Note - Define a datum transformation and/or a projection if you want to display local or grid coordinates for a GNSS point. Alternatively, calibrate the job.

Each point record uses the antenna height given in the previous antenna height record. From this, the General Survey software generates a ground height (elevation) for the point.

The following table shows how the point is stored in the *Stored as* field.

<table>
<thead>
<tr>
<th>Value</th>
<th>What the point is stored as</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid</td>
<td>Grid coordinates</td>
</tr>
<tr>
<td>Local</td>
<td>Local geodetic coordinates</td>
</tr>
<tr>
<td>WGS-84</td>
<td>WGS-84 geodetic coordinates</td>
</tr>
</tbody>
</table>
Value | What the point is stored as
--- | ---
ECEF | WGS-84 Earth-Centered-EarthFixed X, Y, Z coordinates
ECEF deltas | WGS-84 Earth-Centered-EarthFixed X, Y, Z vector
Polar | Azimuth, horizontal distance, and vertical distance. This is a vector.
HA VA SD | A horizontal circle reading, vertical circle reading (a zenith angle), and slope distance. This is a vector.
HA VA SD (raw) | A horizontal circle reading, vertical circle reading (a zenith angle), and slope distance with no corrections applied. This is a vector.
Mag.Az VA SD | A magnetic azimuth, vertical (zenith) angle, and slope distance vector.
MHA MVA MSD | A meaned horizontal angle from the backsight, meaned vertical angle (a zenith angle), and meaned slope distance. This is a vector.
USNG/MGRS | USNG/MGRS string and Elevation

Read the Stored as field in conjunction with the Method field.

For points calculated using *Cogo/Compute point*, you can choose how to store that point. The available options depend on the selected coordinate system and the type of observation used in computing the point.

Note - Points stored as vectors are updated if the calibration or coordinate system of the job changes, or the antenna height of one of the source points is changed. Points stored as WGS-84 coordinates (for example, an offset point calculated using the From a baseline method) are not updated.

For GNSS points, Quality Control (QC) records are stored at the end of the point record.

Point classification

When points are stored they have either one or two classifications:

- Points that have been measured using GNSS have an observation class and a search class.
- Points that have been keyed in, computed, or measured with a conventional instrument or laser rangefinder have only a search class.

Observation class

The following table lists the observation classes and resulting solutions.

<table>
<thead>
<tr>
<th>Observation class</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTK</td>
<td>A real-time kinematic solution.</td>
</tr>
<tr>
<td>L1 Fixed</td>
<td>An L1 fixed real-time kinematic solution.</td>
</tr>
<tr>
<td>L1 Float</td>
<td>An L1 float real-time kinematic solution.</td>
</tr>
</tbody>
</table>
Observation class

<table>
<thead>
<tr>
<th>Observation class</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 Code</td>
<td>An L1 code real-time differential solution.</td>
</tr>
<tr>
<td>Autonomous</td>
<td>A postprocessed solution.</td>
</tr>
<tr>
<td>RTKxFill</td>
<td>A real-time kinematic solution using xFill.</td>
</tr>
<tr>
<td>SBAS</td>
<td>A position that has been differentially corrected using SBAS signals.</td>
</tr>
<tr>
<td>Network RTK</td>
<td>A real-time kinematic solution using Network RTK.</td>
</tr>
<tr>
<td>RTX</td>
<td>A position that has been generated by the Trimble Centerpoint RTX correction service.</td>
</tr>
<tr>
<td>WA Fixed</td>
<td>A fixed solution using wide-area processing.</td>
</tr>
<tr>
<td>WA Float</td>
<td>A float solution using wide-area processing.</td>
</tr>
<tr>
<td>OmniSTAR HP</td>
<td>A high-precision OmniSTAR corrected solution (HP/XP/G2)</td>
</tr>
<tr>
<td>OmniSTAR VBS</td>
<td>An OmniSTAR VBS differentially corrected position</td>
</tr>
</tbody>
</table>

Note - For postprocessed surveys, the observation class is autonomous and no precisions are recorded.

Search class

A search class is applied to a point when it is measured, keyed in, or computed. The search class is used by the General Survey software when details of a point are required for stakeout or calculations (for example, for Cogo calculations).

For more information, see Database search rules.

Viewing the map

The *Map* screen is a graphical representation of features from multiple sources, including:
- points, lines, and arcs from the current job database
- layers of features including:
 - points from linked jobs and linked .csv and .txt files
 - points, lines, arcs, polylines, and other map entities such as alignments and surfaces from other file types
 - background images from georeferenced image files

Use the following links to learn more about using the map:
- Accessing the map
- 3D map (tablet controllers only)
- Navigation softkeys and buttons
- Map Show options
3 Job Operations

- Other map options
- AccessVision
- Selecting data to display in the map
 - Linking files to the current job
 - Adding data files as map layers
- Using the Map for common tasks
 - Create surface
 - Compute volume

Accessing the Map

1. From the Jobs screen tap Map or in any screen tap Map in the status bar.
 Alternatively, if you are running Trimble Access on a tablet controller and you are in a task
 screen that supports AccessVision, tap either or to make the graphical display visible in the
 task screen. If you are connected to a conventional instrument that has Trimble VISION
 technology, tap in the bottom right corner of the graphical display to toggle between the
 map and the Video view.

 On the map, the:
 - current position of the GNSS antenna is displayed as a vertical/horizontal cross.
 - current orientation of a conventional instrument is shown by a dotted line extending from
 the instrument to the end of the screen.
 - location of the prism is shown as a cross when a distance is measured.

2. Use the map softkeys to navigate around the map.

3D map (tablet controllers only)

A 3D map to visualize data in 3 dimensions is available on tablet controllers. You can rotate the data
to view the data from different sides. 3D data visualization is useful for looking at elevation changes
and detecting antenna height errors. It is great for visualizing scan data and surfaces, be it a true 3D
scan, or simply a survey of a building façade. The 3D map is also available in AccessVision screens.
If required, disable the 3D map functionality so that the map always shows a 2D view. To do this,
in the 3D map tap the Options softkey and then clear the 3D map check box. Tap Accept.

Note - The CAD toolbar is not available when using the 3D map. To use the CAD toolbar, disable
the 3D map.

Navigation softkeys and buttons

Some softkeys can operate in an "active" mode. The effect of tapping on the map depends on the
active softkey selected.
2D map softkeys
The following softkeys appear on the map for all non-tablet controllers, and in the 2D map on a tablet controller when the 3D map is disabled.

<table>
<thead>
<tr>
<th>Softkey</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Tap this softkey to zoom in. Tap and hold the softkey to make it active. When active, tap the area of the map to zoom in on, or drag to create a box around the area of interest.</td>
</tr>
<tr>
<td>-</td>
<td>Tap this softkey to zoom out. Tap and hold the softkey to make it active. When active, tap the area of the map to zoom out from.</td>
</tr>
<tr>
<td>🕒</td>
<td>Tap this softkey to shift the center of the map area to another part of the map. Tap the softkey to make it active. When active, tap an area of the map to center on, or tap and drag the map area to where you want to reposition the image.</td>
</tr>
</tbody>
</table>
| 📷 | Tap this softkey to zoom extents and show all features on the screen.

 Note - The current position of the GNSS antenna is not included unless it is currently being used for GPS search. |

Map toolbar (tablet controllers only)
The map toolbar appears on the 3D map.

<table>
<thead>
<tr>
<th>Button</th>
<th>Function</th>
</tr>
</thead>
</table>
| Select | Tap **Select** to select features. Tap the features on the map to select, or drag to create a box around the features you want to select. For more information, see Selecting a feature from the map.

 To clear the current selection, double-tap an empty part of the map. |
<p>| Zoom in | Tap Zoom in to zoom in. Tap and hold the button to make it active. When active, tap the area of the map to zoom in on, or drag to create a box around the area of interest. Alternatively, place two fingers on the screen and stretch out to zoom in even when the map is not in Zoom in mode. |
| Zoom out | Tap Zoom out to zoom out. Tap and hold the button to make it active. When active, tap the area of the map to zoom out from, or drag to create a box that the current screen content will fit into. Alternatively, place two fingers on the screen and pinch in to zoom out even when the map is not in Zoom out mode. |
| Pan | Tap Pan to activate Pan mode. Tap an area of the map to center on, or tap and drag the map area to where you want to reposition the map. If you are using a controller that has arrow keys, you can use the arrow keys to... |</p>
<table>
<thead>
<tr>
<th>Button</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pan</td>
<td>pan even when the map is not in Pan mode. Alternatively, place two fingers on the screen and slide in the desired direction to move the view even when the map is not in Pan mode.</td>
</tr>
<tr>
<td>Zoom extents</td>
<td>Tap Zoom extents to zoom to the map extents. Note - The current position of the GNSS antenna is not considered part of the map extents unless it is currently being used for GPS search.</td>
</tr>
<tr>
<td>Orbit</td>
<td>Tap Orbit to orbit the data around an axis. Tap the map and then drag to rotate the view. The NE axes icon rotates accordingly, to show the orientation of the North and East elevations.</td>
</tr>
<tr>
<td>Predefined view</td>
<td>Tap Predefined view to select a predefined view of the map. Tap the button and then select Plan, Iso, Top, Front, Back, Left, or Right. When in Plan view, additional options are available from the tap and hold menu. These options are not available in the other predefined views. The Iso view shows an isometric view of the data where each angle is 60 degrees. Select Iso again to rotate the view by 90 degrees.</td>
</tr>
<tr>
<td>Show</td>
<td>Tap Show and then select the appropriate menu to select the items to display in the map. Select from Settings, Scans, Filter, Layers, and Pan to. For more information, see Map Show options below.</td>
</tr>
</tbody>
</table>

Additional navigation options

To display more navigation options, in the map view tap and hold the **Map** button in the status bar (or in widescreen mode tap and hold the arrow on the far right side of the map). The following options are available:

- Zoom to the previous view
- Zoom to a default scale and location
- Set a default scale and location

Map Show options

The **Show** menu has the following categories:

- **Settings**
- **Scans**
- **Filter**
- **Layers**
- **Pan to**

Settings

Settings are grouped as follows:
Display options

Ground plane options

Surface options

Point cloud options

Note - Some options are job-specific. For the 2D map these settings are: color gradient, surface triangle, and vertical offset display. For the 3D map these settings are: vertical exaggeration scale, ground plane, color gradient, surface triangle, surface side, and vertical offset display.

Display options

To control which items are displayed in the map:

- In the 2D map, tap the up arrow to access more softkeys and then tap Options.
- In the 3D map, tap Show and then select Settings.

You can configure the following:

- Select the **Names** check box to display name labels next to points in the map. Labels are not displayed for points in DXF files, Shapefiles, and LandXML files.
- Select the **Codes** check box to display code labels next to points in the map. Labels are not displayed for points in DXF files, Shapefiles, and LandXML files.
- Select the **Station values** check box to display road and alignment station values.
- Select the **Elevations** check box to display elevations in the map. Elevations are not displayed for points in DXF files, Shapefiles, and LandXML files.
- Select the **Point symbols** check box to display the points symbols for each point.
- Select the **Stakeout list points** check box to display points from the stakeout list in the map.
- Select the color to use for map labels from the **Label color** list.
- Select the **Hatch polygons** check box to hatch polygons in a background file.
- Select the **Automatic pan to your current position** check box to automatically center the map on your current position if it is available.
- Select the **CAD toolbar** check box to display the CAD toolbar in the map. This option appears on tablet controllers only when the **3D map is disabled**.

When the 3D map is enabled, you can also:

- Set the vertical exaggeration scale in the **Vertical exaggeration** field. The default setting of 1 indicates that the horizontal and vertical scales are identical, which gives a true representation of the data. Enter a larger value in the **Vertical exaggeration** field to emphasize vertical features which might be too small to identify relative to the horizontal scale.

Ground plane options

To configure the ground plane displayed in the 3D map, tap **Show** and then select **Settings** and select page 2.

Select the **Display ground plane** check box and then enter the elevation of the ground plane to display the ground plane. The ground plane elevation is used as a visual reference when viewing the map in 3D. It is not used in calculations.
Surface options
To configure the display of surfaces in the map:

- In the 2D map, tap the up arrow to access more softkeys and then tap Options and select page 2.
- In the 3D map, tap Show and then select Settings and select page 3.

You can configure the following:

- Select the Display color gradient check box to display surfaces with a color gradient.
- Select the Display triangles check box to display surface triangles.
- Enter a value in the Offset to DTM (Vertical) field to raise or lower the surface when viewing from the map.

When the 3D map is enabled, you can also:

- Select the Display sides check box to display the sides of a surface.

Point cloud options
To configure the display of point clouds in the 3D map, tap Show and then select Settings and select page 3.

You can configure the following:

- Select the Color mode for the point cloud.

<table>
<thead>
<tr>
<th>Select...</th>
<th>To...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan color</td>
<td>Indicate the scan the points belong to</td>
</tr>
<tr>
<td>Station color</td>
<td>Indicate the station used to measure the points</td>
</tr>
<tr>
<td>Gray scaled intensity</td>
<td>Indicate the reflective intensity of points using a gray scale</td>
</tr>
<tr>
<td>Cloud color</td>
<td>Show all points the same color</td>
</tr>
</tbody>
</table>

- Select the Point size.

- Select the Maximum surface points value to limit the number of points used to create a surface. If more than the maximum number of points are selected for the surface, the software automatically downsamples to meet the maximum value selected.

- Select the Display uncoordinated scans check box to display scans captured at scan stations. Because there are no coordinates for scan station points, these scans appear at the center of the project area in the plan view of the 3D map.
Select scans
In the 3D map, tap Show and then select Scans. Select the scan(s) to display on the map.

If the connected instrument is a Trimble SX10 scanning total station, the color beside each scan indicates the color used for the point cloud if Scan color is selected as the Color mode in the Settings / Point cloud options.

Select filter
To filter the data shown in the map:

- In the 2D map, tap the up arrow to access more softkeys and then tap Filter.
- In the 3D map, tap Show and then select Filter.

Select which features are displayed in the map by selecting them in the list.

Tap \(\checkmark \) to filter points by Point name, Code, Descriptions (if enabled) and Note. For more information, see Filtering data using wildcard searching.

Layers
To control the display of files or layers added to the map:

- In the 2D map, tap the up arrow to access more softkeys and then tap Layers.
- In the 3D map, tap Show and then select Layers.

For more information, see Adding data files as map layers.

Pan to point
To configure pan settings:

- In the 2D map, tap the up arrow to access more softkeys and then tap Pan to.
- In the 3D map, tap Show and then select Pan to.

Enter a point name and scale value.

Tap the Here softkey to center the map at the current position.

Other map options
Tap the Options softkey to configure the following:

<table>
<thead>
<tr>
<th>Option</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto measure</td>
<td>Select the Auto measure check box to automatically start a measurement when you press the measure key.</td>
</tr>
<tr>
<td>Widescreen</td>
<td>Clear the Widescreen check box to resize the map so that the status bar appears to the right of the map.</td>
</tr>
<tr>
<td>3D map</td>
<td>Select the 3D map check box to use the 3D map. Clear the check box to revert to the 2D map. For more information, see 3D map (tablet controllers only).</td>
</tr>
</tbody>
</table>

Note - The map view is not available in an AccessVision screen if the 3D map is disabled.
AccessVision

AccessVision provides a useful graphical display within task screens. AccessVision incorporates the map view and the video view within the current screen to provide immediate visual feedback and avoid having to switch back and forth between screens. Task screens that support AccessVision include measure, stakeout, key in, cogo, and station setup screens.

Some screens that already provide a graphical display, such as navigate to point, do not support AccessVision.

Note - *AccessVision is supported only on tablet controllers. The map view is not available in an AccessVision screen if the 3D map is disabled.*

When viewing a screen that supports AccessVision, the graphical display is on the left side of the screen. When the controller is connected to an instrument that has Trimble VISION technology, tap ![accessview] in the bottom right corner of the graphical display to toggle between the map and the video view. Selecting points in the graphical display populates the fields on the right of the screen.

Tip - The softkeys available in an AccessVision screen are always the softkeys for the task screen. When in an AccessVision screen, the arrow keys on the tablet controller control the map or video view, except when in the Joystick screen.

To control the display and size of the graphical display in an AccessVision screen:

<table>
<thead>
<tr>
<th>Tap...</th>
<th>To...</th>
</tr>
</thead>
<tbody>
<tr>
<td>![accessview]</td>
<td>Hide the graphical display</td>
</tr>
<tr>
<td>![accessview]</td>
<td>Make the graphical display full screen.</td>
</tr>
<tr>
<td>![accessview]</td>
<td>Revert to showing both the graphical display and the task screen.</td>
</tr>
<tr>
<td>![accessview]</td>
<td>Toggle between the map and the video view (only when connected to an instrument that has Trimble VISION technology).</td>
</tr>
</tbody>
</table>

Selecting data to display in the map

By default, points, lines, and arcs from the current job database appear on the map. You can add more data to the map, including:

- **background images** from georeferenced image files
- **layers** of features including:
 - points from linked jobs and linked CSV and TXT files
 - points, lines, arcs, polylines, and other map entities such as alignments and surfaces from other file types
Background images

The following image file types and associated world files are supported:

<table>
<thead>
<tr>
<th>Image files</th>
<th>World files</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIFF (.tif)</td>
<td>.wld .tfw</td>
</tr>
<tr>
<td>Bitmap (.bmp)</td>
<td>.wld .bpw .bmpw</td>
</tr>
<tr>
<td>JPEG (.jpg)</td>
<td>.wld .jgw .jpgw</td>
</tr>
<tr>
<td>PNG (.png)</td>
<td>.wld .pgw .pngw</td>
</tr>
</tbody>
</table>

Note –
- Only GeoTIFF files or image files with an associated world file can be added to the map.
- Only 24-bit color JPEG files are supported; pure greyscale JPEG files are not supported.
- Rotated images are not supported.

TIFF files are generally much more efficient in their use of program memory than other background image formats such as BMP, JPEG or PNG. This makes it possible to load TIFF files with file sizes of 100 MB or more, while using only a few MB of program memory. However, if the TIFF file is one large tile then this means the entire file will be loaded into the program memory which will affect controller performance.

If you have a Survey-Advanced license, you can export JPEG georeferenced image files from Trimble Business Center using [Image / Capture image]. Trimble Business Center enables large files to be reduced in size for improved performance on the controller.

More memory is required to load a BMP file than is required to load a DXF file, and JPEG/PNG files are a compressed format file that requires more memory again when they are uncompressed and loaded into memory.

To compare the memory required to load a:
- BMP file compared to a DXF file, multiply the BMP file size by four; so a 850 KB BMP file uses 3.4 MB of memory.
- JPEG/PNG file compared to a DXF file, multiply the JPEG/PNG image height by width multiplied by four; for example if a 130 KB image is 1024 pixels wide by 768 pixels high (1024 x 768 x 4 = 3.14 MB), and so would require 3.14 MB of memory to load the file.

Layers

By default points, lines, and arcs from the current job database appear in the map.

To add features from other files to the map, see one of the following:

- Linking files to the current job
- Adding data files as map layers
Linking files to the current job

You can link files (*.csv, *.txt, or *.job) to your current job to provide easy access to additional data. Use a linked file to access points that do not exist in the current job, or that you do not want to import into the current job, such as control points. Linked CSV points appear as a comma (,). Linked points from another job appear with their original point symbol. All linked points appear blue.

You can use points from a linked file to:

- stake out without having the design points in the job
- enter values into Point name fields, such as for Cogo functions
- navigate to control or check shots from previous surveys

For more information on using linked points, see Selecting points using defined criteria.

Note –

- You can link a file from any folder.
- In a linked job, you cannot access lines, or arcs.
- You can only review points in a linked file from the map. Once you select a linked point and copy it into the current job, it appears as a “c” in the map.
- You can link multiple files (*.csv *.txt *.job). When the point does not exist in the current job, but does exist in multiple linked files, the point in the first linked file is used. If multiple points of the same name exist in a linked job, the search rules work within that job to find the best point.

Transferring linked files

You can transfer linked CSV files from the office computer, transfer files between controllers, or export points to a CSV file from a previous job.

Before you transfer a CSV file, make sure the data in the file is in the format: Point name, First ordinate (Northing or Easting), Second ordinate (Northing or Easting), Elevation, Point code.

Note – **The coordinate order (Northing and Easting ordinates) in the comma delimited file must be the same as the setting in the Coordinate order field in the Units screen.**

Use the Data Transfer utility or Windows Mobile Device Center to transfer the file from the office computer to the Trimble controller. For more information, see Transferring files between the controller and the office computer.

To select linked files:

1. From the General Survey main menu, select Jobs / Properties of job and then tap the Linked files button. The Linked files screen that appears lists the files in the last used folder.
2. Tap the file(s) that you want to use for the current job or tap All to select all files.

 To add files from another folder to the list, tap Add, navigate to the required folder and then select the file(s) to add.
3. If Advanced geodetics is enabled, and you select a CSV or TXT file, you must specify if the points in the linked file are Grid points or Grid (local) points.
3 Job Operations

- Select Grid points if the points in the CSV/TXT file are grid points.
- Select Grid (local) points if the points in the CSV/TXT file are Grid (local) points and then select the input transformation to transform them to grid points.
 - To assign the transformation later, select Not applied, this will be defined later, and then tap Accept.
 - To create a new display transformation, select Create new transformation, tap Next and then complete the required steps.
 - To select an existing display transformation, select Select transformation, select the display transformation from the list and then tap Accept.

4. Tap Accept to save any changes.

Tip - If you selected Not applied, this will be defined later when linking a file containing Grid (local) coordinates, and you later want to assign an input transformation to this file, you must un-link and then re-link the file.

For more information on Grid (local) coordinates, see Local transformations.

To import points from a linked file to the current job, select Jobs /Import/Export / Receive data.
When using points from linked files, make sure that they use the same coordinate system as the job that they are being brought into.

Adding data files as map layers

General Survey software supports the display of the following files as map layers:
- AutoCAD (ASCII) files (.dxf)
- Surpac files (.str) - typically used in Mines
- ESRI Shapefiles (.shp)
- LandXML files (.xml)
- Alignments files (.rxl)
- Trimble roads (.rxl)
- Surfaces or digital terrain models (.dtm .ttm .xml)

Only .dxf, .str, and .shp files support layers. Layers in these files become layers in the map. For other file types, each file is added to the map as a single layer. Files that support layers enable you to control visibility and selectability for each layer in a file. If there are no layers, you can control the visibility and selectability of the entire file. See Changing the visibility and selectability of layers and files.

To transfer the files to the controller, use the Trimble Data Transfer utility or Windows Mobile Device Center.

Adding the file to the map

To select a file to view in the Map screen as a layer, do one of the following:
- Select Jobs /Properties of job /Active map.
- In the 2D map, tap the Up softkey to access additional softkey functions and then tap Layers.
In the 3D map, tap 🚬 and then select **Layers**.

Data files that are in the project folder, including all .rxl, LandXML, image, and surface files, automatically appear in the tree list view. To add files from another folder to the list, tap **Add**, navigate to the required folder and then select the file(s) to add.

Files that are listed but show no icon next to them are added to the map but are not visible. The following table explains the icons that appear beside the file names:

<table>
<thead>
<tr>
<th>File icon</th>
<th>Layer icon</th>
<th>indicates…</th>
</tr>
</thead>
<tbody>
<tr>
<td>No icon</td>
<td>-</td>
<td>the file is not selected</td>
</tr>
<tr>
<td>X</td>
<td>-</td>
<td>the file has been loaded but there are no supported entities in the file to display</td>
</tr>
<tr>
<td>✔️</td>
<td>-</td>
<td>some layers are visible in the map but nothing can be selected</td>
</tr>
<tr>
<td>✔️</td>
<td>-</td>
<td>all layers with supported entities are visible in the map, but nothing can be selected</td>
</tr>
<tr>
<td>🧻</td>
<td>-</td>
<td>some layers are not visible in the map, but others are both visible and can be selected</td>
</tr>
<tr>
<td>✔️</td>
<td>-</td>
<td>all layers with supported entities are visible in the map, and some of those can also be selected</td>
</tr>
<tr>
<td>✔️</td>
<td>-</td>
<td>all layers with supported entities are visible in the map and can be selected</td>
</tr>
<tr>
<td>-</td>
<td>No icon</td>
<td>the current layer is not visible in the map</td>
</tr>
<tr>
<td>-</td>
<td>X</td>
<td>there are no supported entities in the layer to display</td>
</tr>
<tr>
<td>-</td>
<td>✔️</td>
<td>the current layer is visible in the map</td>
</tr>
<tr>
<td>-</td>
<td>✔️</td>
<td>the current layer is visible and selectable in the map</td>
</tr>
</tbody>
</table>

Note –

- **If the selectable icon does not appear beside the layer name, the layer does not contain any features that can be selected.**
- **Layers with filenames that contain invalid characters (such as a dollar sign or parentheses) are not shown in the tree view or in the map.**

Changing the visibility and selectability of layers and files

To display and make features in the file selectable, or to disable layers and files:
3 Job Operations

<table>
<thead>
<tr>
<th>Tap...</th>
<th>To...</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>expand the file to display all layers</td>
</tr>
<tr>
<td>-</td>
<td>minimize the file and hide all layers</td>
</tr>
<tr>
<td>the file name</td>
<td>once display all layers within the map file.</td>
</tr>
<tr>
<td></td>
<td>twice make all layers within the map file selectable.</td>
</tr>
<tr>
<td></td>
<td>three times disable all layers within the map file</td>
</tr>
<tr>
<td>the layer name</td>
<td>once display all layers within the map file.</td>
</tr>
<tr>
<td></td>
<td>twice make all layers within the map file selectable.</td>
</tr>
<tr>
<td></td>
<td>three times disable all layers within the map file</td>
</tr>
<tr>
<td>All</td>
<td>once display all layers within the map file</td>
</tr>
<tr>
<td></td>
<td>twice make all layers within the map file selectable</td>
</tr>
<tr>
<td>None</td>
<td>deselect all files and layers</td>
</tr>
</tbody>
</table>

Once the file is loaded, you can switch between the map view and the Active Map screen and then select or deselect the layers you want to view.

Selectable feature operations

Features in layers that you have set as visible and selectable can be used in the following operations:

- **Navigate to a point**
- **Stakeout - points**
- **Stakeout - lines**
- **Stake polylines contained in DXF, STR, SHP, and LandXML files**

 To explode polylines into individual line and arc segments, select the *Explode polylines* check box in the *Layers Options* screen.
- **Stakeout - arcs**
- **Stakeout - alignments (polylines)**

 - Active map lines, arcs, and polylines can be selected for stakeout only from the map.
- **Stakeout - offset alignments**
- **Auto stakeout - points and lines**
- **Stakeout - digital terrain models**

 - To see cut or fill values relative to a DTM, make the DTM file active/selectable.
- **Create nodes**
- **Cogo calculations**

 - **Compute inverse**
 - **Compute distance**
3 Job Operations

- Compute intersection
- Surface creation and volume calculations
- Review from the map
- Key in - alignments (only available from General Survey).
- Define - roads (only available from the Roads application).
- Define - tunnels (only available from the Tunnels application).
- Auto stake - mines (only available from the Mines application).

Creating nodes

To create points at the ends of lines and arcs and at all points along a polyline, or at the center of DXF circle and arc elements, select the Create nodes check box in the Options screen when selecting the layer to display in the map. The created points can then be selected for stakeout or cogo calculations.

This option applies to DXF files, ESRI Shapefiles, and LandXML Parcels (polylines). Creating a point at the center of a DXF arc element does not apply to arc elements that are part of a polyline. Surpacc background files already have the node points available. Clearing the Create nodes check box does not hide these node points.

Note – Because Shapefiles do not support arcs, arcs are often represented as a series of short lines resulting in a large number of points. Performance may be impacted when Create nodes is selected.

Appearance in the map

Layer files are loaded into the job when the map is opened or when the map selection screen is opened.

You can display more than one layer at a time.

Features in layers can be made visible and selectable but they cannot be edited or deleted.

Displayable and selectable entities

DXF files

Displayable and selectable DXF entities:
- ARC, CIRCLE, INSERT, LINE, POINT, POLYLINE, LWPOLYLINE.

Display only DXF entities:
- 3D FACE, SPLINE, SOLID, ATTRIB, TEXT, MTEXT.
- Control characters: C - diameter symbol, D - degree symbol, P - plus/minus symbol, % - percentage symbol.
Extrusion arcs contained in a DXF file are displayed correctly in the map, but cannot be made active. Extrusion arcs form an ellipse in plan view and the staking of ellipses is not supported.

Shapefiles

Supported Shapefile entities:

LandXML files

Supported LandXML entities:
- Points (CgPoint elements), Lines (Parcel and PlanFeature elements), Surfaces
- Only points, lines, surfaces, and alignments that are contained in elements directly under the primary LandXML element are supported.

If a surface in a LandXML file is too large to be loaded into the controller memory, it will be skipped. If there are overlapping surfaces on the map, the interpolated elevation will be that of the first surface returning a non-null elevation (the surface with the first name alphabetically).

Feature names

For Shapefiles, DXF and STR files a name is generated for every selectable feature in the file. For Shapefiles, the name is the first five characters of the Shapefile name, followed by a file index number, then a space and then the line number in the Shapefile where this feature is defined. For DXF files, the name is the first 8 characters of the layer name, followed by a space and then the line number of the feature in the DXF file. For DXF files from Trimble Business Center the entity name, where present, is used. For Surpac (.str) files, points and polylines are placed in layers based on their string numbers. Polylines are named with their counter within the string layer.

A code can be generated for every selectable feature within a map file. This is derived from the attributes stored in the DXF file; often, it is the name, code, and attributes of features in the original file. For Surpac (.str) files, if points have codes they are respected.

You can review a selectable feature in the map to find the file and layer name.

Colors

Points, lines, and arcs in the current job database appear in black.
Active points in map files appear in blue.
Lines and arcs appear in the colors defined in the map file.
Feature code processing colors appear in the color defined in the feature code file (.fzl files from Trimble Business Center only).

Note – All line work features that are coded as white are drawn in black.

Coordinates

Only grid coordinates are displayed. If you have not defined a projection, only points stored as grid coordinates appear.

Grid (local) coordinates cannot be displayed if the input transformation was not defined.
If the Grid coords field in the Cogo settings screen is set to Increase South-West or Increase South-East, the map display is rotated by 180° such that increasing south coordinates are displayed up the screen.

Some applications use a value such as -9999.999 to represent null. For the General Survey software to correctly treat this value as null you must correctly define the DXF null elevation field, available under Options from the map selection screen.

Values are considered to be null if they are less than or equal to the null elevation value. For example, if the null elevation is -9999, then -9999.999 is also considered to be null.

Using the Map for common tasks

Selecting features from the map

To select a feature from the map, do one of the following:

- Tap the required feature(s) from the map area. If there is more than one feature in the highlighted area, a list of features in this area appears. Select the features as required and then tap OK to return to the map.

 Tip - When selecting a line, arc, or polyline to stakeout, tap near the end of the line, arc, or polyline that you want to designate as the start. Arrows are then drawn on the line, arc, or polyline to indicate the direction.

 If the direction of the line, arc or polyline is incorrect, tap the line, arc or polyline to deselect it and then tap it at the correct end to reselect the direction required.

 The direction of alignments and Trimble roads (.rxl files) is defined when they are created, and cannot be changed.

 Note - The offset directions are not swapped when the line direction is reversed.

- Drag a box around the features you want to select.

 When multiple features are selected in this way they are typically sorted in the order in which they are stored in the database. If the order of the entities in the selection is important, you should select them one by one.

 To select a feature from a map file, the map file or layers must be made selectable.

- Tap and hold on the map and then select **Select** from the shortcut menu.

 This option is useful when deleting points.

Deselecting a feature from the map

- Tap the selected feature to deselect it. If there is more than one feature within the highlighted area, a list of features within this area appears. Deselect the features as required. Tap OK to return to the map.

- Tap and hold on the map and select **List selection** from the shortcut menu. A list of the selected features appears. Deselect the features as required.

- To clear the entire selection, double-tap off the selected features. Alternatively, tap and hold on the map and select **Clear selection** from the shortcut menu.
Carrying out a task using the selected feature(s)

- **Measure**
 If there are no features selected, tap *Measure* to measure the current position.
 Tip - To change the code and/or descriptions when using *Measure* from the map, select a point in the map whose settings you want to be the default, tap and hold on the map briefly and then select *Set point details*. Alternatively, if you want to change defaults values, but do not want to use the default from an existing point, make sure that there are no features selected before you set point details.

- **Stakeout**
 - If one or more features are selected, tap *Stakeout* to stake out the selected feature(s).
 - If more than one point is selected, the points are added to the *Stake out points* list, from where you can select them for stakeout.
 - If more than one line or arc is selected, the first item selected is the one used for stakeout.
 - Double-tap a feature to stake out. If there is more than one feature within the highlighted area, a list of features within this area appears. Select the feature to stake out.
 Tip - If two points are selected, tap and hold on the map and then select *Stake out line* to stake a line defined by the two selected points.
 If the selection contains different feature types (points, lines, arcs), only features of the first type selected can be staked out from the map. To stake out other feature types, clear the selection then reselect the other features.

Setting default point details

Tap and hold briefly on the map and then select *Set point details* from the menu.
Use *Set point details* to set the *Next point name, Code, and Description 1 and Description 2* (if enabled) that will be used as the defaults the next time you measure a point.
If you select a single point in the map when you select *Set point details*, the next available point name, and the code and descriptions of the selected point, become the defaults.

Tap and hold shortcut menu in the map

Tap and hold on the map area to access a shortcut menu. The shortcut menu provides quick access to common tasks. The tasks depend on the number and type of features selected.
In the following table, the * symbol against a task shows that you can access it through the shortcut menu for the feature at the top of that column.
Tap and hold menu options that are available for features in the current job:

<table>
<thead>
<tr>
<th>Task</th>
<th>No Features</th>
<th>One point</th>
<th>Two points</th>
<th>Three or more points</th>
<th>Line</th>
<th>Arc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review</td>
<td>-</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Select</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Store a point</td>
<td>*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>List section</td>
<td>-</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Clear section</td>
<td>-</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Widescreen</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>CAD toolbar</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Delete</td>
<td>-</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Stake out point</td>
<td>-</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stake out line</td>
<td>-</td>
<td>-</td>
<td>*</td>
<td>-</td>
<td>*</td>
<td>-</td>
</tr>
<tr>
<td>Stake out arc</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>*</td>
</tr>
<tr>
<td>Create/Stakeout alignment</td>
<td>-</td>
<td>-</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Stake out alignment</td>
<td>-</td>
<td>-</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Stake out road (Roads only)</td>
<td>-</td>
<td>-</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Measure calibration point</td>
<td>-</td>
<td>*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Navigate to point</td>
<td>-</td>
<td>*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Turn to</td>
<td>*</td>
<td>*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compute inverse</td>
<td>-</td>
<td>-</td>
<td>*</td>
<td>*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Area calculations</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Compute intersection</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Subdivide a line</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>*</td>
<td>-</td>
</tr>
<tr>
<td>Subdivide an arc</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>*</td>
</tr>
<tr>
<td>Offset line</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>*</td>
</tr>
<tr>
<td>Key in point</td>
<td>*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Key in line</td>
<td>-</td>
<td>-</td>
<td>*</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Key in arc: 3 points</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Task</td>
<td>Feature</td>
<td>No Features</td>
<td>One point</td>
<td>Two points</td>
<td>Three or more points</td>
<td>Line</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>-------------</td>
<td>-----------</td>
<td>------------</td>
<td>-----------------------</td>
<td>------</td>
</tr>
<tr>
<td>Key in arc: 2 points + center</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key in alignment</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compute volume</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Store road (Roads only)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Store tunnel (Tunnels only)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set point details</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check backsight</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check shot</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tap and hold menu options that are available for features in a linked file or active map file:

<table>
<thead>
<tr>
<th>Task</th>
<th>Feature</th>
<th>One point</th>
<th>Two points</th>
<th>Three or more points</th>
<th>Active map line</th>
<th>Active map arc</th>
<th>Active map polyline</th>
<th>Alignment</th>
<th>Trimble road</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Select</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>List section</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Clear section</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Widescreen</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>CAD toolbar</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Delete</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Stake out point</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Stake out line</td>
<td></td>
<td>-</td>
<td>*</td>
<td>*</td>
<td>-</td>
<td>*</td>
<td>*</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Stake out arc</td>
<td></td>
<td>-</td>
<td>-</td>
<td>*</td>
<td>-</td>
<td>*</td>
<td>*</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Create/Stakeout alignment</td>
<td></td>
<td>-</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Stake out alignment</td>
<td></td>
<td>-</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Stake out road</td>
<td></td>
<td>-</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>
Job Operations

<table>
<thead>
<tr>
<th>Task</th>
<th>Feature</th>
<th>One point</th>
<th>Two points</th>
<th>Three or more points</th>
<th>Active map line</th>
<th>Active map arc</th>
<th>Active map polyline</th>
<th>Alignment</th>
<th>Trimble road</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure calibration point</td>
<td>*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Navigate to point</td>
<td>*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Turn to</td>
<td>*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Compute inverse</td>
<td>-</td>
<td>*</td>
<td>*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Area calculations</td>
<td>-</td>
<td>-</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Compute intersection</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>*</td>
<td>*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Subdivide a line</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Offset line</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Subdivide an arc</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Key in point</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Key in line</td>
<td>-</td>
<td>*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Key in arc: 3 points</td>
<td>-</td>
<td>-</td>
<td>*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Key in arc: 2 points + center</td>
<td>-</td>
<td>-</td>
<td>*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Create surface</td>
<td>-</td>
<td>-</td>
<td>*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Compute volume</td>
<td>-</td>
<td>-</td>
<td>*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Store road (Roads only)</td>
<td>-</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Store tunnel (Tunnels only)</td>
<td>-</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Set point details</td>
<td>*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Check backsight</td>
<td>*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Surfaces and volumes

Surfaces can be created and volumes computed in the 2D or 3D map. Because computations with surfaces and volumes often require processing a lot of data, with larger datasets performance will be better on a tablet. Computations with smaller datasets, for example simple stockpiles, can be performed on non-tablet controllers.
From the tap and hold menu on the map, you can select the following options.

Create surface

Create surface becomes available when there are three or more 3D points selected on the map. A surface is generated from the current point selection and stored as a Triangulated Terrain Model file (surface name.ttm) in the current project folder. You are prompted to enter a name for the surface. The newly-created surface is linked to the current job as an Active map file.

For more information on the display of a color gradient, display of triangles, and applying a vertical offset for a surface, see *Map softkeys and options*.

Delete selected triangles

Delete selected triangles becomes available when one or more triangles in a surface from a TTM file is selected. Use this option to modify the surface, if required, before performing a volume calculation.

Note –

- A triangle can be selected only if one TTM model is displayed and the display surface triangles option is enabled. For more information, see *Map display options*.
- A triangle can be selected only if no other entities, such as points, are selected. To make triangle selection easier, hide other entities using the Filter softkey.
- The Delete selected triangles option is not available if you select all the triangles in the surface.
- To select triangles in the 3D map, the map must be in Plan view.

Compute volume

Like *Create surface*, *Compute volume* becomes available when three or more 3D points are selected on the map. It also generates a surface from the current point selection. However, once the surface is created, it takes you to the *Compute volume* option in the Cogo menu.

Selecting points using defined criteria

While you can select one or a small number of points by tapping the points or dragging a box around them in the map to select them, if you have a large number of points in the job it is easiest to select points by defining selection criteria.

Selecting points from the map using selection criteria

From the tap and hold menu in the map, use the *Select* option to select points from the current job as well as points in files linked to the current job.

Select from

Use the *Select from* menu to specify where to select the points from. Options are from the Current job, Current job and linked files, or Scan files.
Scan files list any scan files (TSF or RWCX) created in the current job using the Scanning option. You can select multiple scan files.

Notes
- You can select scan files only when the current job has scan data associated with it.
- Use the Select softkey to edit the list of selected scan files; use the Reset softkey to deselect all scan files.

To select points from the current job or the current job and linked files, define your selection using any combination of the following fields: Point name or Point range, Code, Description 1, Description 2, Minimum elevation, and Maximum elevation.

Note –
- Use the advanced pop-up arrow to toggle between the Point name field and the point range (From point, To point) fields.
- Use wildcards in these fields to make multiple selections. Use * for multiple characters, and ? for a single character.
- If points are already selected, an Append to current selection check box appears on screen. Clear this option if you want to overwrite the current selection.
- Use the Reset softkey to clear all selection criteria from the fields.
- Any point selections made in the Select screen can be edited in the map view.

Adding points to a list using selection criteria

The Trimble Access software allows you to perform some functions, such as staking points, applying a transformation, defining a plane and export, on a list of points. To create the list of points, tap **Add** and then use one of the following methods to add points to the list:

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter single point name</td>
<td>Enter a single point name in the current job or linked files. To enter a point from a linked file into a Point name field, access the field and key in the point name. A linked point entered into a point name field is copied into the current job database.</td>
</tr>
<tr>
<td>Select from list</td>
<td>Select from a list of all points in the current job and linked files. Tap a column name to sort points by that column.</td>
</tr>
<tr>
<td>Select using wildcard search</td>
<td>Select from a filtered list of all points in the current job and linked files.</td>
</tr>
<tr>
<td>Select from file</td>
<td>Add all points from a defined CSV or TXT file.</td>
</tr>
<tr>
<td>All grid points</td>
<td>Add all grid points from the current job.</td>
</tr>
<tr>
<td>All keyed in points</td>
<td>Add all keyed in points from the current job.</td>
</tr>
<tr>
<td>Method</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Points within radius</td>
<td>Add all points within a defined radius from the current job and linked files.</td>
</tr>
<tr>
<td>All points</td>
<td>Add all points from the current job, linked files, and any scanned files referenced in the job.</td>
</tr>
<tr>
<td>Points with same code</td>
<td>Add all points with a defined code from the current job and linked files.</td>
</tr>
<tr>
<td>Points by name range</td>
<td>Add all points within a name range from the current job and linked files.</td>
</tr>
<tr>
<td>Section of job</td>
<td>Add all points in chronological order from the first occurrence of "From point" through to and including the first occurrence of "To point".</td>
</tr>
<tr>
<td>Current map selection</td>
<td>Add all points currently selected in the map.</td>
</tr>
<tr>
<td>Scan file points</td>
<td>Add all points from scanned files referenced in the job. Select from a list of referenced scan files.</td>
</tr>
</tbody>
</table>

Note –

- *The Current map selection and Scan file points methods are not available when applying a transformation. However, any points selected in the map automatically populate the list.*
- *You must create a new list of points for each software function that allows a point list. The same points list is not reused, for example, when staking out points and then exporting points.*
- *When you add points to the list for stakeout using the Select from file option, you can add them from the linked file even if the point in the linked file already exists in the current job. The Select from file option is the only way you can stake a point from a linked file when a point of the same name exists in the current job.*
- *If a linked job contains two points of the same name, the point with the higher class is displayed.*

For more information, see:

- Staking out points
- Measure points on a plane
- Import and export fixed format files
- Transformations
Units

To configure the Units, tap Jobs / Properties of job / Units and change the fields as required.

Tip - In some fields (for example, Azimuth), you can enter a value in units other than the system units. The Units softkey appears in these fields. When you tap Enter to accept the field, the value is converted to the system units.

Use Units to configure the display of the following settings:

<table>
<thead>
<tr>
<th>This setting</th>
<th>Specifies how the following values are displayed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance and grid coords</td>
<td>Distance and Northing/Easting coordinates</td>
</tr>
<tr>
<td>Height</td>
<td>Height and elevation</td>
</tr>
<tr>
<td>Distance display</td>
<td>The number of decimal places in all distance fields. When the Distance and grid coordinates field is set to US survey feet or International feet you can configure the distance display to be in feet and inches. Supported fractions of an inch include: 1/2", 1/4", 1/8", 1/16" and 1/32".</td>
</tr>
<tr>
<td>Coordinate display</td>
<td>The number of decimal places in all Northing/Easting coordinate fields</td>
</tr>
<tr>
<td>Area display</td>
<td>The number of decimal places for a computed area</td>
</tr>
<tr>
<td>Volume display</td>
<td>The number of decimal places for a computed volume</td>
</tr>
<tr>
<td>Angles</td>
<td>Angles</td>
</tr>
<tr>
<td>Azimuth format</td>
<td>Azimuths</td>
</tr>
<tr>
<td>Lat / Long</td>
<td>Latitude and longitude</td>
</tr>
<tr>
<td>Temperature</td>
<td>Temperature</td>
</tr>
<tr>
<td>Pressure</td>
<td>Pressure</td>
</tr>
<tr>
<td>Coordinate order</td>
<td>Coordinates</td>
</tr>
<tr>
<td></td>
<td>The order for the displayed grid coordinates can be set to:</td>
</tr>
<tr>
<td></td>
<td>• North-East-Elev</td>
</tr>
<tr>
<td></td>
<td>• East-North-Elev</td>
</tr>
<tr>
<td></td>
<td>• Y-X-Z (equivalent to East-North-Elev - field prompts changed)</td>
</tr>
<tr>
<td></td>
<td>• X-Y-Z (equivalent to North-East-Elev - field prompts changed)</td>
</tr>
<tr>
<td></td>
<td>For the Y-X-Z and X-Y-Z options, the convention used defines that the Y axis is the East axis and the X axis is the North axis.</td>
</tr>
<tr>
<td>Station display (also)</td>
<td>Station</td>
</tr>
<tr>
<td></td>
<td>The station values can be displayed as either:</td>
</tr>
</tbody>
</table>

Trimble Access General Survey help
This setting

Specifies how the following values are displayed

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chainage</td>
<td>Known as Chainage in some countries) This defines the distance along a line, arc, alignment, road or tunnel.</td>
</tr>
<tr>
<td>Station index</td>
<td>The Station index display type uses an extra Station index increment field value as part of its definition. The station value is displayed as per the 10+00.0 option, but the value before the + is the station value divided by the Station index increment. The remainder is displayed after the +. For example if the Station index increment is set to 20, a station value of 42.0 m is displayed as 2 + 02.0 m. This display option is used in Brazil but may have application in other markets.</td>
</tr>
<tr>
<td>Station index increment</td>
<td>If the Station display is set to Station index the station index increment field appears enabling an appropriate station index increment to be entered. See details above.</td>
</tr>
<tr>
<td>Grade</td>
<td>Grade</td>
</tr>
<tr>
<td></td>
<td>The grade of a slope can be displayed as an angle, percent, or ratio.</td>
</tr>
<tr>
<td></td>
<td>The ratio can be displayed as Rise:Run or Run:Rise.</td>
</tr>
<tr>
<td>Area</td>
<td>Supported area units include:</td>
</tr>
<tr>
<td></td>
<td>- Square meters</td>
</tr>
<tr>
<td></td>
<td>- Square miles</td>
</tr>
<tr>
<td></td>
<td>- Square international feet</td>
</tr>
<tr>
<td></td>
<td>- Square US survey feet</td>
</tr>
<tr>
<td></td>
<td>- Square international yards</td>
</tr>
<tr>
<td></td>
<td>- Square US survey yards</td>
</tr>
<tr>
<td></td>
<td>- Acres</td>
</tr>
<tr>
<td></td>
<td>- Hectares</td>
</tr>
<tr>
<td>Volume</td>
<td>Supported volume units include:</td>
</tr>
<tr>
<td></td>
<td>- Cubic meters</td>
</tr>
<tr>
<td></td>
<td>- Cubic international feet</td>
</tr>
<tr>
<td></td>
<td>- Cubic US Survey feet</td>
</tr>
<tr>
<td></td>
<td>- Cubic international yards</td>
</tr>
<tr>
<td></td>
<td>- Cubic US survey feet</td>
</tr>
</tbody>
</table>
This setting Specifies how the following values are displayed

- Acre feet
- US acre-feet

<table>
<thead>
<tr>
<th>Laser VA display</th>
<th>Laser Vertical angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Can be vertical angles measured from the zenith, or inclinations measured from horizontal.</td>
</tr>
</tbody>
</table>

Time format Time

Time/Date

To set the time and date on a Trimble controller:

1. Do one of the following:
 - **On a Trimble tablet:**
 - From the desktop, tap the displayed time and date at the bottom left of the screen and then tap [Change date and time settings...].
 - **On a Trimble Slate controller and TSC3 controller:**
 - Press the Windows button to open the Start menu and then tap [Settings / Clock and Alarms].
 - **On a Trimble CU controller:**
 - Double-tap the clock on the right of the taskbar.
 - **On a Geo7X/GeoXR controller:**
 - From within the Trimble Access menu, tap the Trimble button, select Start Menu and then tap [Settings / Clock and Alarms].

2. Change the date and time as required. Press Enter to accept the new settings or Esc to cancel.

To configure the GPS time display setting:

1. From the main menu, select Jobs / Properties of job / Units.
2. In the Time format field, select the required time display format.

A time stamp is stored with every record in the job and output to the DC file every 30 minutes.

Cogo settings

To configure the Cogo settings, tap Job / New job / Cogo settings when creating a new job. For an existing job tap Job / Properties of job / Cogo settings.

Use **Cogo settings** to configure:

- Distance display (grid, ground, or ellipsoid)
- Sea level (ellipsoid) correction
- Increasing grid coordinate direction
Distance display

The *Distances* field defines how distances are displayed and which distances are used for calculations in the General Survey software. Select one of the following options:

- Ground (the default setting)
- Ellipsoid
- Grid

The following diagram shows the options between points A and B.

Ground distance

A ground distance is the horizontal distance calculated between the two points at the mean elevation parallel to the chosen ellipsoid.

If an ellipsoid has been defined in the job and the *Distances* field is set to *Ground*, the distance is calculated parallel to that. If no ellipsoid has been defined, the WGS84 ellipsoid is used.

Ellipsoid distance

If the *Distances* field is set to *Ellipsoid* then a correction is applied and all distances are calculated as if on the local ellipsoid, which usually approximates to sea level. If no ellipsoid has been specified, the WGS84 ellipsoid is used.

Note - *If the coordinate system for a job is defined as Scale factor only, ellipsoid distances cannot be displayed.*
Grid distance

If the Distances field is set to Grid, the grid distance between two points is displayed. This is the simple trigonometrically distance between the two sets of two-dimensional coordinates. If the coordinate system for the job is defined as Scale factor only, and the Distances field is set to Grid, the General Survey software displays ground distances multiplied by the scale factor.

Note - A grid distance between two measured GNSS points cannot be displayed unless you have specified a datum transformation and a projection, or performed a site calibration.

When you select Scale factor only in a conventional instrument only survey, grid and ground distances can be displayed.

Curvature correction

In the General Survey system, all ellipsoid and ground distances are parallel to the ellipsoid.

Sea level (ellipsoid) correction

The Sea level (ellipsoid) correction check box enables you to choose whether or not the horizontal components of distances measured with a conventional total station should be corrected to their equivalent length on the ellipsoid.

In most cases, select the Sea level (ellipsoid) correction check box to compute the correct geodetic grid coordinates from the total station observations.

However, if the local ellipsoid was inflated to provide computed ground coordinates, but the point heights were not changed to be in terms of the inflated ellipsoid, do not select sea level correction; for example, when using jobs with Minnesota county coordinate systems.

The sea level correction is carried out using the average height (not elevation) of the line above the local ellipsoid. If both ends of the line have null heights, the default height specified for the job is used to compute this correction.

The formula used for the computation is:

\[
\text{Ellipsoid horizontal distance} = \frac{\text{HzDist} \times \text{Radius}}{(\text{Radius} + \text{AvHt})}
\]

- **HzDist**
 Horizontal component of measured distance
- **Radius**
 Ellipsoid semi-major axis
- **AvHt**
 Average height above local ellipsoid of the measured line

Note –

- In jobs where the coordinate system is configured to provide ground coordinates, the Sea level (ellipsoid) correction is always enabled and cannot be edited. This is because the sea level correction is already applied in the computation of the ground coordinates.
- In a Scale only job, there is no local ellipsoid available because this is not a geodetic projection. In this case, the correction computation defaults to using the semi-major axis of the WGS84 ellipsoid (6378137.0 m) as the radius value. The sea level correction in Scale only jobs also uses the point elevations because there are no ellipsoidal heights available.
You cannot set a default height for Scale only jobs. This means that if the Sea level (ellipsoid) correction is enabled in a Scale only job, you must use 3D points, or null coordinates will be computed because it is not possible to compute the sea level correction.

Grid coordinate direction

Use the Grid coords field to set the grid coordinates to increase in one of the following sets of directions:

- north and east
- south and west
- north and west
- south and east
The following diagram shows the effect of each setting.

Azimuth display
The azimuth displayed and used by the General Survey software depends on the coordinate system that you defined for the current job:

- If you defined both a datum transformation and a projection, or if you selected *Scale factor only*, the grid azimuth is displayed.
- If you defined no datum transformation and/or no projection, the best available azimuth is displayed. A grid azimuth is the first choice, then a local ellipsoidal azimuth, then the WGS84 ellipsoid azimuth.
If you are using a laser rangefinder, the magnetic azimuth is displayed. If a south azimuth display is required, set the South azimuth field to Yes. All azimuths still increase clockwise. The following diagram shows the effect of setting the South azimuth fields to No or Yes.

Neighborhood adjustment

You can apply a *Neighborhood adjustment* to all conventional foresight observations made from a Station setup plus or Resection, and to all GPS observations made in a job that has a valid GPS site calibration. To apply Neighborhood adjustment, select the check box in Properties of job / Cogo settings.

Neighborhood adjustment uses the residuals from *Station setup plus, Resection or GNSS site calibration* to calculate delta grid values to apply to subsequent observations made during the survey. Each observation is adjusted according to its distance from each of the backsight points (for a conventional survey) or calibration points (for a GNSS survey). The following formula is used to calculate the weight to give the residuals of each backsight or calibration point:

\[
p = \frac{1}{D^n}
\]

where:
\[
p
\]
- is the weight of the backsight or calibration point
- \(D \) is the distance to the backsight or calibration point
- \(n \) is the weight exponent

A weighted average is then computed and the resulting delta values are applied to each new observation to get an adjusted grid position.

Note — A high value for the weight exponent results in low impact (weight) of distant backsight or calibration points.
For Neighborhood adjustment to be applied, the station setup or calibration must have at least 3 known points with 2D grid residuals. That is, if you perform a:

- Station setup plus, you must have HA VA SD observations to at least 2 backsight points, each with known 2D coordinates.
- Resection, you must have HA VA SD observations to at least 3 backsight points, each with known 2D coordinates.
- Calibration, you must have GNSS observations to at least 3 control points, each with known 2D coordinates.

Note –

- Neighborhood adjustment will use a GNSS site calibration only if it has been observed in the current General Survey job. This is because a GNSS calibration that is part of the coordinate system in an uploaded job does not include the GNSS calibration residuals.
- For Station setup plus, the known station coordinate is included in the neighborhood adjustment calculation. In the calculation, the station coordinate is given grid residuals of zero.
- Neighborhood adjustment is a 2D-only adjustment. Any vertical residuals from station setup or calibration are not used in the neighborhood adjustment calculations.
- Neighborhood adjustment using GNSS site calibration residuals is applied to all WGS84 points in the job, not just GNSS observations.

WARNING - Make sure that the backsight or calibration points are around the perimeter of the site. Do not survey outside the area enclosed by the backsight or calibration points (and for Station setup plus, the station point). The neighborhood adjustment is not valid beyond this perimeter.

Magnetic declination

Set the magnetic declination for the local area if magnetic bearings are being used in the General Survey software. You can use magnetic bearings if you choose the Cogo / Compute point using the Brg-dist from a point method.

The magnetic declination defines the relationship between magnetic north and grid north for the job. Enter a negative value if magnetic north is west of grid north. Enter a positive value if magnetic north is east of grid north. For example, if the compass needle points 7° to the east of grid north, the declination is +7° or 7°E.

Note –

- Use the published declination values if available.
- If grid north in the job has been rotated away from true north due to the coordinate system definition (possibly via a GNSS calibration) then this must be allowed for in the magnetic declination specified.

Advanced Geodetic

Select Advanced Geodetic to enable the following options:

- Station setup scale factor
- Helmert transformation for Resection
Local transformations
SnakeGrid

Averaging

The **Averaging** field defines how duplicate points are averaged. Select one of the following options:
- Weighted
- Unweighted

See **Compute average** for further details on weighted averaging.

CAD toolbar

The CAD toolbar enables you to measure feature codes and to edit coded line work from within the map. It is available on tablet controllers only.

Note – The CAD toolbar is not available when using the 3D map. To use the CAD toolbar, turn off the 3D map. To do this, in the 3D map tap the Options softkey and then clear the 3D map check box. Tap Accept. The map now shows the classic 2D map, with the CAD toolbar available.

To access the toolbar, do one of the following. The toolbar appears on the left side of the screen.
- Tap and hold on the map screen and then select **CAD toolbar** from the shortcut menu.
- In the map, tap **Options** and then select the **CAD toolbar** check box.

The CAD toolbar has two modes of operation:
- **Measure mode**
- **Drawing mode**

To change between modes, tap the appropriate button at the top of the CAD toolbar.

<table>
<thead>
<tr>
<th>Button</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Switch to measure mode.</td>
</tr>
<tr>
<td></td>
<td>Switch to drawing mode.</td>
</tr>
</tbody>
</table>

Note –
- The CAD toolbar requires a **Feature code library** with line and control codes:
 - To measure or draw lines and arcs, the feature code library must have control codes for Start join sequence and Join to named point.
 - To measure or draw arcs, the feature code library must have control codes for Start tangential arc and End tangential arc.
 - To add arcs using feature codes, the points comprising the arc must have been observed consecutively. It will therefore not always be possible to join points with arcs.
Measure mode

Measure mode enables you to measure feature codes including points, lines, and tangential arcs. By using the appropriate CAD buttons with a suitable feature code library selected, you can add line work to the map and the line work will update with respect to the line and control codes in the feature code library.

The following functions are supported:

<table>
<thead>
<tr>
<th>Button</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Measure a point feature.</td>
</tr>
<tr>
<td></td>
<td>Measure a line feature.</td>
</tr>
<tr>
<td></td>
<td>Start a new line/arc sequence.</td>
</tr>
<tr>
<td></td>
<td>Start an arc.</td>
</tr>
<tr>
<td></td>
<td>End an arc.</td>
</tr>
<tr>
<td></td>
<td>Close a last measured line/arc sequence.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set a feature code.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Point name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set the next point name.</td>
<td></td>
</tr>
</tbody>
</table>

Measuring a point

1. Tap the **Point** feature button.
2. If a point feature code is not already set, the feature code list appears showing all point features.
 - Select a feature code from the list. This code is now set as the default point feature code.
 - Alternatively, tap the feature code button and then set a code.
3. Tap **Measure**.

Measuring a line

1. Tap the **Line / Arc** feature button.
2. If a line feature code is not already set, the feature code list appears showing all line features.
 - Select a feature code from the list. This code is now set as the default line feature code.
 - Alternatively, tap the feature code button and then set a code.
3. Tap **Measure**. Once the point is stored, this begins or continues a line sequence.
Measuring an arc
1. Tap the Line / Arc feature button and then make sure that a line feature code is set.
2. Tap Start Arc.
3. Tap Measure. Once the point is stored, Start Arc returns to an unselected state.
4. Continue to measure line features until you reach the end point of the arc.
5. Tap End Arc.
6. Tap Measure. This last stored point ends the arc and End Arc returns to an unselected state.

Note – To measure the transition point between two back-to-back arcs, tap both the Start arc and End arc buttons before measuring.

Closing the last measured line / arc sequence
Tap Close after measuring the last point in the line / arc sequence. The line / arc sequence closes back to the first point in the line / arc sequence. It does not close to a line / arc added by the drawing mode.
Trimble recommends that you close a figure immediately after measuring the last point.

Starting a new line / arc sequence
1. Tap the Line / Arc feature button and then make sure that a line feature code is set.
2. Tap the Start new sequence button.
3. Tap Measure. Once the point is stored, the previous line / arc sequence ends and a new line / arc sequence begins.

Setting the current feature code
Tap the Feature code button to select the current point or line feature code from the list.
If the job uses descriptions, select the Feature code button to access a form that enables you to enter codes and descriptions.
You can also set the current feature code by selecting a point or line feature in the map that has the required feature code and then tapping the Feature code button.

Setting the next point name
1. Tap the Point name button.
2. Enter the next point name and then tap Accept.

Drawing mode
Drawing mode enables coded line work to be manually added. This includes lines, arcs, and back-to-back arcs. You can also delete line work.
If a suitable feature code library is selected, line work can be added to or deleted from the map and the line work will update with respect to the line and control codes in the feature code library.
The following functions are supported:

<table>
<thead>
<tr>
<th>Button</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Draw a line feature.</td>
</tr>
<tr>
<td></td>
<td>Draw an arc feature.</td>
</tr>
<tr>
<td></td>
<td>Start a new line / arc sequence.</td>
</tr>
<tr>
<td></td>
<td>Start second arc of a back-to-back arc.</td>
</tr>
<tr>
<td></td>
<td>Delete a line or arc feature.</td>
</tr>
</tbody>
</table>

| Code name | Set the feature code. |
| Point name | Set the next point name. |

Drawing a line feature
1. Tap the **Add line** button.
2. Make sure that a line feature code is set appropriately.
3. In the map, tap the start point of the line sequence you want to create.
4. Continue to tap points until the line sequence is complete. As you select each subsequent point, a line is drawn between the two selected points and the first point is then deselected.

Drawing an arc feature
1. Tap the **Add arc** button.
2. Make sure that a line feature code is set appropriately.
3. In the map, tap the start point of the arc you want to create.
4. Continue to tap points until the arc sequence is complete. As you select each subsequent point, an arc is drawn from the first point using all subsequently selected points. As the arc is drawn the previous point is deselected.

Note – *To draw a back-to-back arc, tap the Back-to-back arc button after completing the first arc and before selecting the second point of the second arc. After the first part of the arc is drawn between the first and second points of the arc, the button returns to the unselected state.*

Starting a new line / arc sequence
1. Tap the **Line** feature button and then make sure that a line feature code is set.
2. Tap the **Start new sequence** button.
3. In the map, tap the start point for the line / arc you want to create. The previous line / arc sequence ends and a new line / arc sequence begins.
Deleting line work

1. Select the elements that you want to delete.
2. Tap the *Delete* button.
3. Select the feature(s) to delete from the list and then tap *Enter*.

Setting the current feature code

Tap the *Feature code* button to select the current point or line feature code from the list.

If the job uses descriptions, selecting the *Feature code* button brings up a form that enables you to enter the code and descriptions.

You can also set the current feature code by selecting a point or line feature in the map that has the required feature code and then tapping the *Feature code* button.

Setting the next point name

1. Tap the *Point name* button.
2. Enter the next point name and then tap *Accept*.

Offset line

You can offset a line:
- horizontally
- vertically
- horizontally and vertically

Note – *This function is available only from the Map.*

To offset a line:
1. From the Map, select the line to offset.
2. Tap and hold briefly on the map and then select *Offset line* from the menu.
3. Specify the offset value(s): Use the pop-up arrow to select the appropriate offset direction.
4. Tap *Store*.

Compute intersection

You can compute and store points at the intersection of:
- two points and a line
- two lines
- two arcs
- two points and an arc
- a line and an arc

Note – *This function is available only from the Map.*
To compute an intersection:

1. From the Map, select the entities to intersect.
2. Tap and hold briefly on the map and then select Compute intersection from the menu.
3. Optionally, enter a horizontal and/or vertical offset for each entity: Use the pop-up arrow to select the appropriate offset direction.
4. Select how the elevation for the intersection point will be calculated. Options vary depending on the entities selected but can include:
 - None - the elevation will be null
 - Line/Arc 1 - the elevation is computed using the grade of the first line/arc
 - Line/Arc 2 - the elevation is computed using the grade of the second line/arc
 - Average - the average of the elevations is computed using the grade of the first and second line/arc
5. Tap Calc.
6. Complete the fields and then tap Store.

Note –
- The horizontal offset direction is relative to the selected direction of the entity.
- When one or both entities are an arc, two intersections may be computed. Both can be stored but if you don’t want to store the first point, tap Skip.

Using a feature library

To select a code in a survey, the job must be using the feature library that contains the appropriate codes.

To select the library that you want to use:
1. From the main menu, select Jobs / Properties of job.
2. Tap the Feature library button and select the library.

Entering a code when measuring a point

If you use a feature library, the Code field on the Measure screen in the General Survey software provides access to the Code list screen where you can select the codes to apply to the measured point from the feature code list.

To choose a code from the library:
1. In the Code field, enter the first character of the required feature code. The feature code list is filtered according to the type of controller that you are using and the Auto-complete setting:
<table>
<thead>
<tr>
<th>Trimble controller</th>
<th>Auto-complete on</th>
<th>Auto-complete off</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSC3/Geo7X/GeoXR Slate/Trimble tablet</td>
<td>The feature code list is always filtered according to the characters that you enter. When you type a character, the first available code that starts with that character appears.</td>
<td>The feature code list is always filtered according to the characters that you enter. Only the character that you enter appears and is used to filter the feature code list.</td>
</tr>
</tbody>
</table>

| Trimble CU | You do not need to put the controller into alpha mode to select an alpha code. The feature code list is filtered according to the characters available on the controller key that you pressed. For example, if you press "2", the list is filtered on a "2", and the associated keypad characters "I", "U", and "V". The first available code that starts with one of these characters appears. | The General Survey software maintains the alpha or numeric setting. Only the character that you enter appears and is used to filter the feature code list. |

2. Tap C to search by Code or tap D to search by Description. Depending on your selection, the software shows items in the feature code library that have codes or descriptions starting with the text you entered.

If you are searching by Code, text you enter in the code field will auto complete to match existing codes in the list. Text does not auto complete when you are searching by Description.

3. To further filter the feature code list, enter additional characters. Because you can define multiple codes for one button by separating the codes with a space, if you enter a space in the text box, the software assumes that the text before the space applies to one code/description and the text after the space applies to a new code/description.

4. To search based on a series of characters that appear anywhere within the code or description, tap Match. All items in the FXL that contain the exact string entered are listed.

 Note – You must enter the exact string to find. You cannot enter an asterisk (*) as a wildcard character when using the Match function.

5. To filter the entire feature code list by either code Type, for example point or control code, or by the Category as defined in the feature library, tap ▼. The Set code list filters screen appears. Tap a feature type or a feature category to show/hide it. Tap Accept to return to the code list.

6. Tap the required code or use the arrow keys to scroll to the required code and tap Enter to accept this code and move to the next field.

When you select a code from the list, filtering is disabled and the entire feature code list appears, which allows you to select another code.

7. To enter multiple codes, select each code in turn from the list. As you select multiple codes from the list, the system automatically enters a space to separate the codes. If you enter codes
through the controller keypad, you must enter a space after each code to display the entire
code list again before you enter the next code.

Note – An individual feature code cannot contain more than 20 characters. But the maximum
number of characters in a code field is 60, which allows for more than one code from the
library to be selected for the point.

If a feature code list is already selected for the job, you can use codes from the list when keying in a
note. From the Note screen, press Space to display the feature code list. Select a code from the list
or type the first few letters of the code.

Note – Feature libraries cannot be used in Description fields.

Editing a code once a point has been measured

1. Select Jobs / Review job or Jobs / Point manager.
2. Edit the code field for the point.

To select the entire code in the code list window, click anywhere in the code field, or press the
controller left or right arrow when on a code field.

Tip – A partial selection made in the code field is retained in the Code list dialog.

When the Code list dialog is active:

- To replace the code:
 - Select a code from the list when the entire code is highlighted (with an unfiltered list).
 - Select a code from the list when the highlight or cursor is within a code (with a filtered list).
- To add a code:
 - Select a code from the list when the cursor is at the start or end of a code (with an
 unfiltered list).

Spaces are automatically entered to separate multiple codes.

The code list is filtered according to the characters to the left of the cursor or highlight. It is not
filtered if the cursor is at the beginning or end of the code field and editing is not in progress.

Using a touch screen to replace a code:

1. Tap in the code field. The code field is highlighted.
2. Use the scroll bar to scroll to the new code and then tap to select the new code you want to
 replace the old code.
3. To exit the Code selection dialog, tap Enter.

Using a touch screen to add to an existing code:

1. To open the Code list dialog, tap in the code field.
2. To remove the highlight on the code field before you select the new code, tap at the beginning
 or end of the code field.

 The General Survey software automatically inserts spaces to separate multiple codes.
Using a keyboard to replace a code:

1. Tab or arrow to the code field.
2. Press the key representing the first character of the code. The code list is filtered on that first character.
3. Depending on the size of your code library, do one of the following:
 - If the required code is not visible, press the key(s) representing the next character(s) of your code to further filter the list.
 - If the required code is visible, arrow down to the code, press Enter to select the code and then press Enter again to exit the dialog.

Using a keyboard to add to an existing code:

1. To open the Code list dialog, press the right arrow.
2. To remove the highlight on the code field before you select the new code, press the right arrow again.

The General Survey software automatically inserts spaces to separate multiple codes.

Tips

- To edit an existing code, use the arrow keys to navigate to the correct position and then use the backspace key to remove unwanted characters. As the code is modified, the code list filters accordingly.
- When auto-complete is turned off, recently used codes appear at the top of the code list. Multiple entry codes are remembered as a single entry in the recently used list. This allows you to quickly select recently used codes, especially multiple code entries.
- To enter a code that is not in the library, but which has a similar entry in the library, press the space key to accept the code that you enter not the similar code from the library. Alternatively, turn off auto-complete.

Using feature codes with predefined attributes

When you use a feature code that has attributes, the General Survey software prompts you to enter the attribute data.

You can use feature libraries that were created using Trimble Office software, such as the Trimble Business Center Feature Manager. Feature codes that have attributes have an attribute icon () next to the feature code in the library.

To assign an attribute to a point:

1. Ensure that a suitable Feature library is associated with the job. To do this, select Jobs / Properties of job and then tap the Feature library button to associate a feature library with the job. Tap Accept.
2. Enter the point name and select a code with attributes.
3. Tap the Attrib softkey and then enter the attributes of the point you are measuring
4. From the same screen, tap the Option softkey to select the default attribute behavior. Choose from:
 - Last used
 - From library
Note – When measuring a point, tap Options and select Prompt for attributes to make the attribute form appear each time there are required attributes for which no value has yet been entered. However, note that:

- If you pre-entered attributes using the Attrib softkey, you are not prompted for attributes.
- If the attribute is set as a required attribute in the feature code library and does not have a default value set in the feature code library, then even if Prompt for attributes is not selected the attribute form is displayed to ensure the attributes are collected. To avoid being prompted for attributes when you have not selected the Prompt for attributes check box you must make sure required attributes have a default value set in the library or set the default attribute behavior to Last used.

Resurveying points that already have attributes

To stake out and re-measure points for which you already have attribute data:

1. If the job is not yet in the General Survey software, transfer it from the Trimble Business Center software. Make sure you transfer relevant features and attributes as well as the points.
2. From the main menu, tap Stakeout / <Style name> / Points.
3. Tap Options and from the As-staked point details group, set the As-staked code field to Design code.
4. Stake out the point.
5. Measure the as-staked point.

 The attribute data displayed for the point is the attribute data that you entered previously. The defaults in the feature library are not used. Update the values as required.

Additional settings

To configure the additional settings, tap Job / New job / Additional settings when creating a new job. For an existing job tap Job / Properties of job / Additional settings.

Use Additional settings to configure:

- Descriptions
- Feature library
- Point name range for the job
- Add to CSV file

Descriptions

You can choose to display two additional description fields in many functions within the General Survey software.

The description fields are similar to code fields because they enable you to add additional information to data. They do not use feature code libraries, and they do not support attributes.

The description field data is available in Trimble DC files as Note records.
You can also use Export fixed format files or Export custom format files to export the data stored in the description fields.

To enable and customize the description fields:
1. From the main menu, select Jobs / Properties of job.
2. Tap the Descriptions button.
3. Select the Use descriptions check box.
4. If required, enter a new name for Description 1 label and Description 2 label.
5. Tap Accept.

Once the additional descriptions fields are enabled, they are available in the following features of the General Survey software:

- Station setup
- Measure topo
- Measure codes
- Continuous topo
- Stakeout
- Point manager
- Review job
- Key in point, line, and arc
- Compute point
- Compute average
- Transformations
- Traverse
- Wildcard search

Each of the two description fields remembers the descriptions that are entered. To view the stack of previously used descriptions, tap the arrow on the description field.

The description stack is unique for each description field. The description stack is stored to the [descriptions.xml] file in the [System files] folder on the controller. You can edit it with a text editor, and copy it to another controller.

Point name range for the job

To specify a minimum and maximum point name for the job, select the Apply point name range check box and then enter the required point names.

Note – The point names must be numeric. Numbers that include decimal points or alphabetic characters are ignored. Negative and positive numbers are supported.

Feature library

Select the Use attributes of base code check box to provide attributes for the complete code, or from a portion of the code - the "base code". This setting is applied throughout the General Survey software, including Measure codes.
Attributes and base codes

Typically, base codes are used when you use the '+1' and '-1' softkeys to "string" feature codes. For example, when you code a fence where all observations coded "Fence01" are joined together and all observations coded "Fence02" are joined together, and so on, and they all have the same attributes. In this example, you can create feature code libraries that contain all the "Fence***" codes, or contain just the base code "Fence".

If you do not string codes, or if you do string codes but you include the entire code in the feature code library, then you are not using base codes. Disable Use attributes of base code (clear the check box).

If you do string codes, and the feature library includes only the base code, then enable Use attributes of base code (select the check box).

In the General Survey software, you can use the extra power of Measure codes to create a button that contains a numeric or alpha-numeric code (the base code) and then append a numeric suffix using the + or - softkeys. For codes entered into any other code field in the General Survey software, you cannot use the + or - softkeys to append a suffix, so when you use base codes, the software can only attempt to determine the base code by stripping the numeric characters from the end of the codes.

The following rules help to explain the base code:

- When Use attributes of base code is disabled, the code entered is the base code.
- When Use attributes of base code is enabled, the base code is determined by internally stripping any numeric characters from the end of the code.
- When Use attributes of base code is enabled and you edit a code that is passed from Measure codes, the base code is re-derived by internally stripping any numeric characters from the end of the code.

Add to CSV file

You can choose to add points measured using Measure topo or Measure rounds to a CSV file. To do this:

1. Select the Enable option.
2. In the CSV file name field, enter a file name or use the folder button to select a file. By default, the CSV file is stored in the current user folder.

Tip - This option can be used to create a file of control points.

Media files

Media files, for example images, can be:

- Uploaded as a file
- Captured using the controller's internal camera
- Captured using an instrument that has Trimble VISION technology
- Captured using a digital camera including the:
3 Job Operations

- Ricoh Caplio 500SE-W via Wi-Fi
- Ricoh Caplio 500SE-W via BlueTooth
- SDHC compatible digital camera via Wi-Fi

Media files can be linked to:

- An attribute.
 The media file name is automatically entered into the File name attribute field when a .jpg/.jpeg image is added to \[My Documents] on the controller or if an image is captured using:
 - The controller’s internal camera
 - An instrument that has Trimble VISION technology
 - A digital camera including the:
 - Ricoh Caplio 500SE-W via Wi-Fi
 - Ricoh Caplio 500SE-W via BlueTooth
 - SDHC compatible digital camera via Wi-Fi

- A job
- A point in a job

You can draw on media files to add additional information.

Note – Images captured with an instrument that has Trimble VISION™ technology are saved to the <jobname> Files folder. Images captured using the controller’s built-in camera or a digital camera are typically saved to the My Pictures folder. For some devices the location these files are saved to can be changed, but Trimble recommends you save the files to the My Pictures folder. The Trimble Access software monitors the My Pictures folder and moves images saved to the My Pictures folder to the <jobname> Files folder. If the files are saved to another location, the software cannot detect the arrival of new files and cannot move them. Storing all the images in the current <jobname> Files folder facilitates download with Trimble Business Center and AccessSync, and also makes linking the images to a point, a job, or an attribute possible.

Geotagging an image

Geotagging is the process of adding geographical identification metadata to various media such as images. Metadata includes WGS-84 latitude, longitude, and height, that is written to the EXIF header of the image (EXIF = EXchangeable Image File format). The geotagged image can be used in the Trimble Business Center, Trimble Connected Community, and third-party applications. Geotagging is assigned to jpeg images linked as a file or image attribute or media file to a point. This requires the job to have a coordinate system.

The position written to the image is provided using either the:

- On-board GPS of the controller
- GNSS receiver, or conventional instrument, connected to the controller

You must activate geotagging in both the operating system of the controller and within the Trimble Access software.
Note –

- It is not possible to remove geotagging information from an image.
- If you are using a digital camera that supports geotagging, and geotagging within Trimble Access is not activated, the metadata added to the image will be at the position of the camera, not at the measured point.

Enabling geotagging in the Trimble Access software

1. Enter a feature code with a file attribute and then tap Attrib.
2. Tap the Options softkey and then select Geotag images.

To geotag an image after it has been added to a point:

1. Add another image, tap Store and then tap Accept.
2. Add a previous image, select geotagging, tap Store and then tap Accept.

Geotagging using the on-board GPS of the controller

Geotagged is supported for positions captured using the on-board GPS for the following controllers:

- Trimble TSC3
- Trimble Slate controller
- Trimble tablet

Note – Although the Geo7X/GeoXR has on-board GNSS, images can only be geotagged with a position captured using a connected Trimble GNSS receiver. See below for details.

Enabling geotagging for a Trimble TSC3

1. Press (Fn + 1).
2. Tap [Menu] scroll down and select [Geotagging]
3. Configure the [Geotagging], [GPS Power] and [Font] settings. For further information, refer to the TSC3 controller manual. Geotagging can either be to the Exif header, text on the image or both.

Enabling geotagging for a Trimble Slate controller

1. From the General Survey menu, tap Instruments / Camera.
 Tip - To be able to access the camera from anywhere within Trimble Access, add a command to the Favorites list or customize an App button.
2. Tap the screen and then tap the up arrow to display the pop-up menu.
3. Tap to access the camera settings and then to access the [Image tagging] menu.
4. Select [Date] and [GPS] to configure geotagging. For further information, refer to the Trimble Slate controller manual.
5. Tap [X] to save your configuration and exit.
Enabling geotagging for a Trimble tablet

1. From the General Survey menu, tap Instruments / Camera.
 Tip - To be able to access the camera from anywhere within Trimble Access, add a command to the Favorites list or customize an App button.
2. Tap the screen and then the up arrow \(\uparrow \) to display the pop-up menu.
3. Tap \(\rightarrow \) to access the camera settings and then \(\Rightarrow \) to access the [Image tagging] menu.
4. Select [Date] and [GPS] to configure geotagging. For further information, refer to the documentation for your Trimble tablet.
5. Tap [X] to save your configuration and exit.

Geotagging using a GNSS receiver or conventional instrument connected to the controller

To configure geotagging using the position from a GNSS receiver or conventional instrument connected to the controller, do the following:

1. From the General Survey menu, select Jobs / Properties of job.
2. Tap the Media file button.
3. Select Geotag images. Geotagging is only supported for images linked to the Previous point, Next point or Point name.
4. Tap Accept.

To enable geotagging:

1. Enter a feature code with a file attribute and then tap Attrib.
2. Tap the Options softkey and then select Geotag images.

To geotag an image after it has been added to a point:

1. Add another image, tap Store and then tap Accept.
2. Add a previous image, select geotagging, tap Store and then tap Accept.

Drawing on an image

The Draw option is available when viewing a .jpg or .jpeg image in:

- Jobs / Review job
- the Video screen after capturing the image using the Snapshot option

Note – HDR images or images captured using a Trimble V10 imaging rover cannot be drawn on.

To draw on an image:

1. Tap Draw.
2. To pre-configure the line width, style, and color or the text color, background color, and size, tap Options.
3. From the *Draw* tool bar select the appropriate option to draw items on the image:
 - freehand line work
 - lines
 - rectangles
 - ellipses
 - text
To split text onto a new line, press *Shift + Enter* or *Ctrl + Enter*.
Up to 10 undo actions are supported.
Immediately after drawing an item on the image you can:
 - Tap and hold on the item and then drag it to a new position on the image.
 - Select *Options* and change the line width, style, and color or the text color, background color, and size of the item.

4. To save a copy of the original image to the `<jobname> Files\Original Files` folder, tap *Options* and select *Save original image*.
 Note – if you do not have a job open, images are saved to the current project folder and original images are saved to the Original Files folder inside the current project folder.

5. Tap *Save*.
 To view the original image in the *Review Job* screen, tap *Original*. To return to the edited image, tap *Modified*.

Using a camera to capture an image

Images can be captured using the:
- Trimble TSC3
- Trimble Slate controller
- Geo7X/GeoXR
- Trimble tablet
- An instrument that has Trimble VISION technology
Images can also be captured using a digital camera including the:
- Ricoh Caplio 500SE-W via BlueTooth
- Ricoh Caplio 500SE-W via Wi-Fi
- SDHC compatible digital camera via Wi-Fi
By default, images are saved to the `<jobname> Files` folder. If you do not have a job open, images are saved to the current project folder.
To specify a different folder for images transferred via Wi-Fi, select *Settings / Connect / Wi-Fi image transfer*.
Tips

- Media files (images) captured using a separate digital camera, or the controller or instrument's integrated camera can be:
 - linked to an attribute, the job, or a point in a job. See Linking media files.
 - drawn on in Jobs / Review job. See Drawing on an image.
- To be able to access the camera from anywhere within Trimble Access, add a command to the Favorites list or customize an App button.

Using the TSC3 controller to capture images

1. Press (Fn + 1) or from the General Survey menu, tap Instruments / Camera.
2. Tap Menu and configure the various camera settings, if required. By default, the camera resolution is set to the second lowest value. You may want to change this setting to obtain better-quality images.
 The zoom factor values that appear depend on the selected resolution. For more information, refer to the TSC3 controller documentation.
3. Position the controller to capture the required image and then press the trigger key (the Enter key on the controller's navigation pad) lightly to focus and then complete the press to capture the image.
4. To close the camera, tap OK twice.

Using the Trimble Slate controller to capture images

1. From the General Survey menu, tap Instruments / Camera.
2. Tap the screen and then the up arrow \(\uparrow \) to configure the various camera settings, if required. For more information, refer to the Trimble Slate controller documentation.
3. Position the controller to capture the required image and then tap the camera button \(\text{拍照} \) to capture the image.
4. To close the camera, tap the screen and then tap [X].

Using the Geo7X/GeoXR to capture images

1. Press the camera button or from the General Survey menu, tap Instruments / Camera.
2. Tap Menu and configure the various camera settings, if required. The zoom factor values that appear depend on the selected resolution. For more information, refer to the Geo7X/GeoXR controller documentation.
3. Position the controller to capture the required image and then press the camera button to focus and then release to capture the image.
4. To close the camera, tap OK.
Using the Trimble tablet to capture images

1. From the General Survey menu, tap *Instruments / Camera*.
2. Tap the screen and then the up arrow ▲ to configure the various camera settings, if required. For more information, refer to the Trimble tablet documentation.
3. Position the controller to capture the required image and then tap the camera button or the OK button on the controller to capture the image.
4. To close the camera, tap the screen and then [X].

Using an instrument that has Trimble VISION technology to capture images

1. Connect to the instrument.
2. To access the Video option do one of the following:
 - From the main menu, tap *Instrument / Video*.
 - Tap the Instrument icon in the status bar and then tap *Video* in the *Instrument functions* screen.
3. Tap the Settings button ☀ to set the photo properties, if required. See *Video* for more information.
4. Tap the Snapshot button PHOTO to capture the image.
5. Tap *Store* to store the image.

See *Video* for a description of Trimble VISION technology.

Supported wireless cameras

With some brands of digital camera, you can take images and then wirelessly transfer them to the controller.

You can use Bluetooth or Wi-Fi technology for wireless transfer of images. A Wi-Fi connection can be more difficult to set up but offers faster file transfer. A Bluetooth connection is generally easier to set up but file transfer is slower.

<table>
<thead>
<tr>
<th>Camera</th>
<th>Wireless technology</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ricoh Caplio 500SE-W</td>
<td>Wi-Fi</td>
<td>FTP</td>
</tr>
<tr>
<td>Ricoh Caplio 500SE-W</td>
<td>Bluetooth</td>
<td>Bluetooth</td>
</tr>
<tr>
<td>SDHC compatible digital camera</td>
<td>Wi-Fi</td>
<td>Eye-Fi</td>
</tr>
</tbody>
</table>

You can connect a **controller that has Bluetooth wireless technology** to a Bluetooth capable digital camera, or connect a **controller that has Wi-Fi technology** to a Wi-Fi capable digital camera.

If the image does not transfer within a few minutes, turn off the camera and then turn it on again. This will cause the Eye-Fi SDHC card to restart the transfer process.

To use a Wi-Fi connection to a camera and an Internet connection via Bluetooth to an external phone at the same time, you must first create the Internet connection (using Internet Setup) and then create the connection to the camera.
Setting up the Ricoh Caplio 500SE-W using a Bluetooth connection

For optimal file transfer through a Bluetooth connection, make sure that the correct settings are configured on the camera:

1. Press [Menu/OK] while in shooting mode to view the shooting settings [SHTG STGS] menu.
2. Press the right arrow to select the expanded settings [EXP SET] menu.
3. Press the up or down arrows to ensure that the menu items are configured as follows:

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT Auto Conn</td>
<td>Off</td>
</tr>
<tr>
<td>Master/Slave</td>
<td>Master</td>
</tr>
<tr>
<td>Image File Size</td>
<td>160</td>
</tr>
<tr>
<td>Auto Del</td>
<td>Off</td>
</tr>
<tr>
<td>Quick Send Mode</td>
<td>2 Touch</td>
</tr>
<tr>
<td>Change COM</td>
<td>BT</td>
</tr>
</tbody>
</table>

Tip - Transferring large images through a Bluetooth wireless connection can be slow. For faster file transfer from the camera to the controller, set the [Image File Size] to the smallest value. This transfers a small image with the same name as the original file to the controller, enabling you to link the image correctly to your job. When in the office, copy the files from the camera into the `<jobname>` Files folder, overwriting the images that were transferred from the controller. Do not change the image names on the controller. If you set [Quick Send Mode] to [1Touch], the [Image File Size] setting does not apply and the full-sized image is transferred, making the transfer slower.

Setting up a Wi-Fi connection between the controller and camera

- For more information, refer to the support note Trimble Handhelds Running Windows Mobile Version 5.0 Software: Connecting a Ricoh Caplio 500SE-W Camera.

Configuring a Trimble tablet to work with an SDHC compatible digital camera

Note – Wi-Fi image transfer may not work on non-Trimble tablet computers. For more information, refer to the documentation provided with your computer.

To communicate with an SDHC-compatible digital camera, you must select Wi-Fi image transfer when installing the Trimble Access software using the Trimble Access Installation Manager. As the Wi-Fi image transfer software and license are installed, a configuration wizard configures and pairs the Eye-Fi card to the controller. However, as your Wi-Fi connection may be used for Internet access, you must manually configure the Wi-Fi setting each time you switch between transferring images and Internet use.

To manually switch to the Wi-Fi image transfer network:

1. From the main Trimble Access menu, tap Settings / Connect / Wi-Fi image transfer.
2. If the User Account Control dialog appears, tap Yes.
3. From the Wi-Fi image transfer screen, select the Settings tab.
4. Tap Wi-Fi networks to open the Network and Sharing Center dialog.
5. Tap **Connect** or **disconnect** or **Connect to a network** (if no connection has been established). From the pop-up list of wireless network connections, select the serial number of your Trimble tablet.

6. Tap **Connect** to switch to the Wi-Fi image transfer network.

7. Close the **Network and Sharing Center** dialog.

8. From the **Wi-Fi adaptor mode** drop-down list, select **Connect to ad-hoc network**.

9. Close **Wi-Fi image transfer**. When the **Set network location** dialog appears, select **Public**.

You are now configured to capture and wirelessly transfer images.

To return to the previous network:

1. From the main Trimble Access menu, tap **Settings / Connect / Wi-Fi image transfer**.

2. If the **User Account Control** dialog appears, tap Yes.

3. From the **Wi-Fi image transfer** screen, select the **Settings** tab.

4. Tap **Wi-Fi networks** to open the **Network and Sharing Center** dialog.

5. Tap **Connect or disconnect** or **Connect to a network** (if no connection has been established). From the pop-up list of wireless network connections, select the previous network.

6. To return to the previous network, tap **Connect**.

7. Close the **Network and Sharing Center** dialog.

8. From the **Wi-Fi adaptor mode** drop-down list, select **Connect to infrastructure network**.

9. Close **Wi-Fi image transfer**.

Configuring a non-tablet controller to work with an SDHC compatible digital camera

To configure non-tablet controllers that have Wi-Fi to communicate with an SDHC-compatible digital camera, you must select Wi-Fi image transfer when installing the Trimble Access software using the Trimble Access Installation Manager. As the Wi-Fi image transfer software and license are installed, a configuration wizard configures and pairs the Eye-Fi card to the controller.

To enable Wi-Fi image transfer on the controller:

1. From the main Trimble Access menu, tap **Settings / Connect / Wi-Fi image transfer**.

2. From the **Wi-Fi image transfer** screen, select the **Settings** tab.

3. Tap **Turn on Wi-Fi**.

4. From the **Wi-Fi adaptor mode** drop-down list, select **Connect to ad-hoc network**.

5. Tap **Close**.

Annotating a snapshot

Use the **Annotate snapshot** option to add an information panel and crosshairs for the measured position to images captured using the **Video / Snapshot** option.

1. From the main menu, tap **Instrument / Video**.

2. Tap the up arrow and then tap **Options**.
3. Enable Annotate snapshot and then:
 - Select the items from the Annotate options group to display in the information panel at the bottom of the image.
 - Select the Crosshair checkbox to add the crosshair for the measured position.

4. To save a copy of the original image to the <jobname> Files\Original Files folder, select Save original image.

Tip – The information panel is not displayed when the image is captured. To view the information panel, go to Review job and select the image.

Note –
 - The Annotate snapshot check box is available only if the Snapshot on measure check box is enabled.
 - To display descriptions in the information panel, select the Descriptions item and then go to Job properties and select Use descriptions and define the description labels in the Additional settings screen.
 - If you do not have a job open, images are saved to the current project folder and original images are saved to the Original Files folder inside the current project folder.

Linking media files

Media files can be linked to:

- An attribute
- A job
- A point in a job

Note –
 - You should not rename a file after attaching it to an observation. Files renamed after attaching will not be downloaded with the job.
 - Feature codes created using the General Survey software do not have attributes associated with them.

Linking media files to an attribute

Use the File name attribute field to link a file name to an attribute. You can use file name attributes for any type of file, but typically when linking .jpg/.jpeg images.

The File name attribute field includes a Browse button that enables you to:

- Find and select a file name as an attribute.
- Review a .jpg/.jpeg file that was entered into the attribute field.

The File name attribute field detects when a .jpg/.jpeg image is added to [\My Documents] on the controller, or when an image has been captured using:

- A Trimble controller with an internal camera
- An instrument that has Trimble VISION technology
3 Job Operations

- A digital camera including the:
 - Ricoh Caplio 500SE-W via Wi-Fi
 - Ricoh Caplio 500SE-W via BlueTooth
 - SDHC compatible digital camera via Wi-Fi

If an image is detected, the file name is automatically entered into the File name attribute field.

If there are multiple File name attribute fields, the filename appears in the highlighted field. Alternatively, tap Browse ... to open a dialog and then do one of the following to select the required file:

- Tap the file.
- Use the arrow key to highlight the file and then tap OK.
- If selecting a .jpg/.jpeg file, tap and hold with the stylus on the file and then select Preview. Tap Select to select the current file, or tap Prev or Next to preview another file.

If you select a .jpg/.jpeg file, an option to Review the selected file becomes available from the Browse button. To change your selection, tap ... and then tap Select file.

Once you select an image from a folder, it becomes the default folder the next time you select an image.

When selecting the file, the available "tap and hold" options are: Select, Preview, Cut, Copy, Paste, Rename, Delete, Create folder, and Properties.

Tips
- To sort a column in ascending or descending order, tap the column header.
- An arrow beside the column title indicates the sort order.
- To quickly select the latest file, sort on Modified date and time. If the oldest files appear at the top of the list, click Modified again to reverse the sort order.

Using a Trimble controller with an internal camera to capture images from the attribute form

1. Enter a feature code with a file attribute and then tap Attrib.
 - If the View before storage check box is enabled in the Measure point options screen, then the attribute form automatically appears when you store the point.

2. Tap ![Capture Image](image) in the attribute form to capture an image using the internal camera. Alternatively, press the appropriate button on the controller to capture the image. See Using a camera to capture an image.

3. The image name is automatically entered into the file attribute field. If required, review the image; tap Browse ... and then select Review. To save the attributes, tap Store.

 Note – For image names to be entered automatically, the images must be stored in the default folder location (MyPictures).
Using an instrument to capture images

Use an instrument that has Trimble VISION technology to capture images and automatically link them to a File name attribute field. You can do this from the attributes form or from the video screen.

You can use the Capture softkey to capture images.

You can use the Snapshot on measure option in the video screen to measure points and automatically add the image name to the File name attribute field.

Using an instrument to capture images from the attributes form

1. Connect to the instrument.
2. Enter a feature code with a file attribute and then tap Attrib.
3. Tap to capture an image:
 - If the video screen is not already open, it opens now. Set the appropriate image quality and zoom settings and then capture the image. When the image is captured, tap Store. To return to the attribute form, tap Close.
 - If the video screen is open in the background, an image is automatically captured using the current video settings. When the image is captured, tap Store.
4. The image name is automatically entered into the file attribute field. If required, review the image; tap Browse and then select Review. To save the attributes, tap Store.

 Note – When measuring a point with a code that includes a photo attribute, if you selected the Attrib softkey before measuring and storing the point and you have elected to annotate the image with the grid and/or WGS coordinates, the coordinates are shown as null because the point has not yet been measured.

Using an instrument with snapshot on measure

1. Connect to the instrument.
2. From the Instrument menu tap Video.
3. Tap and then tap Settings:
 - Set the image properties, if required.
 - Make sure that Snapshot on measure is enabled.
 - To draw the instrument crosshairs on the image, select the Crosshair check box in the Annotate options group.
 - Select the color of the crosshairs in the Overlay color field.
 - Set the other options as required and then tap Accept.
4. In the video screen, aim to the target and then tap Measure.
5. If required, set the feature code and then tap Attrib. The attributes form appears and the image is automatically captured with the file name entered into the file attribute field.
 - If there are multiple File name attribute fields, the file name is entered into the highlighted field.
• If there are multiple codes entered for a point, an attribute form will appear for each code with attributes. The image will be captured when the first file attribute field appears.

6. Tap Store to save the attributes and return to the video screen.

Note –
• If no feature code is set then the captured snapshot is assigned to the measured point.
• When using AccessVision and you are viewing the video display within the Measure topo screen, the snapshot on measure setting is applied. This is the same behavior as when a measurement is initiated from the Instruments / Video screen.

Setting the default attributes option

You can configure the General Survey software to use Last used attributes, by default. To do this, tap Options (available when the attributes appear) and then set the Default attributes field to Last used.

You can configure the General Survey software to use attributes from the Feature library, by default. To do this, tap Options (available when the attributes appear) and then set the Default attributes field to From library.

Note – You must first define the default attributes in the Feature library, or default values will be null.

Using a digital camera to capture images

With some brands of digital camera, you can take images and then wirelessly transfer them to the controller. When using a feature library with file name attributes you can preview and associate the image files as attributes of a feature code.

You can connect a controller that has Bluetooth wireless technology to a Bluetooth capable digital camera, or connect a controller that has Wi-Fi technology to a Wi-Fi capable digital camera.

Sending files from the Ricoh Caplio 500SE-W camera through Bluetooth

The first time you transfer files to a particular controller:

1. Capture the image to be transferred.
2. Press [Playback] to review the image.
3. Press [MENU/OK] to view the Playback Settings Menu [PLBK STGS].
4. Press the down-arrow to access the [FILE SEND] menu.
5. Press the right arrow to view a list of Bluetooth devices available to send the image to. If there are no devices stored on the camera, the following message appears, [The destination not registered. Search Destination?] Select [Yes].
6. Select the controller you want to send the file to and then press [OK].
7. Select [SEND ONE] and then press [OK] to send the image.
8. The file is sent to the controller. If prompted, accept the file on the controller. Files are stored in the [\My Device\My Documents] folder.
9. The file name is automatically entered into the File name attribute field (if the attribute field has focus when the image appears). If there are multiple File name attribute fields, the file name is entered into the highlighted field. Alternatively, tap Browse and then tap Select file.
After you transfer one file to a controller through the Bluetooth connection, you can use the [Quick Send Mode] to send files to the same controller. For optimal file transfer, use the [2 Touch Quick Send Mode]:

1. Capture the image to be transferred.
2. Press [Quick Review].
3. Press [OK] to send the image. The camera connects to the last used Bluetooth device and then sends the image.
4. The file name is automatically entered into the File name attribute field (if the attribute field has focus when the image appears). If there are multiple File name attribute fields, the file name is entered into the highlighted field. Alternatively, tap Browse and then tap Select file.

Note – When [Quick Send Mode] is set to [1Touch], the [Image File Size] setting does not apply and the full-sized image is transferred, making the transfer slower.

Setting up a Wi-Fi connection between the controller and camera

For more information, refer to the support note *Trimble Handhelds Running Windows Mobile Version 5.0 Software: Connecting a Ricoh Caplio 500SE-W Camera.*

Linking media files to a job or a point

To capture an image using a Trimble controller and then link it to the job or point in a job, do the following:

1. Use the controller to capture the image. (On any controller, from the General Survey menu, tap *Instruments / Camera.*)
 Tips
 - See *Cameras* for details on configuring the camera for each controller.
 - To be able to access the camera from anywhere within Trimble Access, add a command to the *Favorites* list or customize an *App* button.
2. If, when the Media file was configured, you selected the Show with new media file option, the media file screen appears showing a thumbnail of the image. This enables the Link to method to be changed and, if linking by point name, the point name.
 Note – *If the Show with new media file option was not selected, the image will be automatically linked.*
3. Use the Geotag images option to override, for this image only, the Media file configuration for geotagging images.
4. Tap Accept to link the image.
5. The image is now linked according to the setting in the Link to option.

Media file configuration

To configure how a media file is linked to the job or point in a job, do the following:

1. From the main menu, select Jobs / Properties of job.
2. Tap the Media file button.
3. From the Link to option, select how the images will be linked. Choose from:
 - Job - linked to the job
 - Previous point - linked to the latest point stored
 - Next point - linked to the next point to be stored
 - Point name - linked to the point entered in the Point name field
 - None - the image is saved but is not linked to the job or a point

 Note – For all options, the media file is always saved to the `<jobname>` Files folder. If there is no job open, the media file is saved to the current project folder.

4. Select the Show with new media file option to show the media file screen immediately after capturing an image. This enables the Link to method to be changed and, if linking by point name, the point name.

 Note – The Show with new media file setting controls whether the media file screen is shown for all jobs.

5. If the Link to option was set to Previous point, Next point, or Point name, you can select Geotag images. See Geotagging for further details.

6. Tap Accept.

Copying between jobs

You can copy the following items from one job to another job on the controller:

- Calibration
- All control points
- Calibration and control
- Local transformations
- Points
- RTX-RTK offset

To do this:

1. From the main menu, tap Jobs / Copy between jobs.
2. Browse to and select the job to be copied from.
3. Select the job that the data will be copied to.
4. Select the type of data to be copied and select whether duplicate points should be copied. Duplicate points in the job you are copying to will be overwritten.
5. Tap Accept.

When copying points between jobs, make sure that the points you are copying use the same coordinate system as the job that the files are being brought into.

When copying local transformations between jobs, all transformations are copied, and the copied transformations are not editable. To modify or update a copied transformation, update the original transformation and then copy it again.
Note – You can only copy information between jobs that are in the current project folder. If the file(s) you want to copy data between are not available, use Job open to change the current project folder, or use Explorer to copy the file(s) to the current project folder.

To copy a job and associated job files collected during the survey (for example, image and scan files) to a new location, use Copy job files to.

To create a new job with all the defaults (including coordinate system settings) from another job, see Creating a job.

Importing and exporting fixed and custom format files

This menu lets you send and receive data to and from another device, export and import fixed format files, export and import custom format files and transfer files between controllers.

For more information, see:
- Sending and receiving ASCII data between external devices
- Import and export fixed format files
- Export custom format files
- Import custom format files

Sending and receiving ASCII data between external devices

This section describes how to use the Send data to another device and Receive data from another device functions in the General Survey software. Use these functions to transfer point names, point codes, and grid coordinates in ASCII format between the Trimble controllers and a variety of conventional instruments, data collectors, and office computers.

In addition, you can transfer ASCII files directly to the office computer using third-party download software, such as HyperTerminal.

Note – Only points with grid coordinates are transferred when you use the ASCII data transfer function. If the job does not have a projection and datum transformation specified, GNSS points cannot be transferred. Furthermore, deleted points, and any points stored as polar vectors from a deleted point, cannot be transferred.

See:
- Transferring ASCII data to and from an external device
- Sending data to another device
- Receiving data from another device
Transferring ASCII data to and from an external device

You can transfer ASCII data to and from an external device or office computer in the following formats:

- Trimble GDM (Area)
- Comma delimited (*.csv, *.txt)
- SDR33 coordinates
- SDR33 DC
- TDS CR5
- Topcon (FC-5)
- Topcon (GTS-7)
- Trimble DC v10.7
- Trimble DC v10.0
- SC Exchange
- Trimble Zeiss M5

Sending data to another device

WARNING - When sending data to a device that does not include a units setting as part of its file, make sure that the General Survey file uses the units setting of that device.

If you are not sure whether the device file includes a units setting, set the General Survey file to the same units as the device.

To send ASCII data to an external device:

1. Select Jobs / Import/Export / Send data.
2. Use the File format field to specify the type of file to send.
3. Set the transfer parameters:
 a. Set the Controller port field to the Trimble controller port you are using for the transfer.

 Note – Set the controller port to Bluetooth to send Comma Delimited, Trimble DC v10.0, Trimble DC v10.70 and SC Exchange formats to another controller using Bluetooth. Before sending files using Bluetooth, you must configure the Bluetooth connection. For more information, see Bluetooth.
 b. Set the Baud rate and Parity fields to match the corresponding parameters on the device that you are communicating with.
 c. If the File format field is set to Comma Delimited (*.CSV, *.TXT), set the baud rate correctly on the external device. If appropriate, also set the flow control (xon/xoff).
 d. If you are transferring a SDR33 .dc file, and you want the General Survey software to include a checksum when the file is transferred, select On in the Checksum field.

Note –

- For the Trimble GDM (Area), SDR33, TDS CR5, Topcon (GTS-7), Topcon (FC-5), and Trimble Zeiss M5 output options, you must select the appropriate format on the external device.
The Trimble Zeiss M5 output option uses the default Markings for the Trimble 3300 instrument in the coordinate file that is transferred. Markings refers to the layout of the 27 character field used for the point number and code details in the M5 format file. The Markings in the transferred file are as follows:

- Characters 1 - 11 are unused and are output as spaces.
- Characters 12 - 15 hold numeric point codes (right justified within these characters). Any non-numeric characters in point codes are not output to the file.
- Characters 16 - 27 hold numeric point names assigned by the General Survey on export (right justified within these characters).

Make sure that the Markings settings on a 3300 instrument, and the P11 Markings on a 3600 instrument, are configured as above when transferring ASCII files to and from General Survey.

4. Set the file parameters:
 a. If the File format field is set to SDR33 coordinates or TDS CR5, the Job name field appears. Enter a name for the file that is created when the data is transferred.
 b. Set the Point name field to Unchanged or Auto-generate. Unchanged sends the point names as they appear on the Trimble controller. Auto-generate adds two extra fields:
 - Use the Start point name field to specify the name of the first point to be transferred.
 - Use the Auto point step size field to define the amount by which the Start point value is incremented or decremented when the General Survey software generates point names for subsequently transferred points.
 Note – If the File format field is set to TDS CR5 and the Point name field is set to Unchanged, a point will only be transferred if the point name is less than eight characters long and contains numeric characters only.
 c. Use the Point code field to specify what is sent to the external device selected in the Code field:
 - Select Use point code to send the point code.
 - Select Use point name to send the point name.
 Note – If you have used long codes in the General Survey software, and the file format you are transferring to does not support long codes, the codes will be shortened.
 d. If the File format field is set to SDR33 coordinates, there is an Output notes check box. Select this to output all user-entered notes with the point data. The notes are output in SDR33 record 13NM format.
 e. If the Comma Delimited (*.CSV, *.TXT) option is selected, you can specify the format of the data that is received. Five fields appear: Point name, Point code, Northing, Easting, and Elevation.

Using the options provided, select a position for each field. Select Unused if a particular value is not present in the file being received. For example:

- Point name Field 1
- Point code Unused
- Northing Field 2
5. Transfer the files:
 a. When the format details are complete, tap Send.
 b. If you are sending points (not a .dc file), the Select points screen appears. Tap Add to select the point selection method and then select the points to send.
 c. The General Survey software prompts you to initiate receiving on the instrument that you are sending data to. For more information about receiving data, refer to the manual for the receiving device.
 d. When the other device is ready to receive, tap Yes to send the data. The data is transferred.

Note –
- When sending ASCII data from a Trimble controller to an external device, it is important to follow on-screen instructions. The cable must not be connected until you are prompted to do so. If you connect the cables at the wrong time, the transfer will fail.
- In an SC Exchange .dc file, all observations are reduced to WGS84 positions and grid positions (coordinates). Use this file format to transfer .dc files between different versions of the General Survey software.
- General Survey outputs the latest version SC Exchange DC file that the software knows about. When importing SC Exchange files, General Survey reads all records it knows about. If importing a later version SC Exchange file into an older version of General Survey, the software does not read new records that it does not understand.
- The Trimble GDM (Area) and Trimble Zeiss M5 formats created using the General Survey Send data option are designed for data transfer to terrestrial instruments. The file format used is different from the GDM job and M5 files downloaded using Data Transfer.

Receiving data from another device

WARNING - When receiving data from a device that does not include a units setting as part of its file, make sure that the General Survey file uses the units setting of that device. If you are not sure whether the device file includes a units setting, set the General Survey file to the same units as the device.

To receive ASCII data from an external device:
1. Select Jobs / Import / Export / Receive data.
2. Use the File format field to specify the type of file to receive.
3. Set the transfer parameters:
 a. In the Port details / Controller port field, select the Trimble Controller port used for the transfer.

Note – Set the controller port to Bluetooth to receive Comma Delimited, Trimble DC v10.0, Trimble DC v10.70 and SC Exchange formats to another controller using Bluetooth. Before receiving files using Bluetooth, you must configure the Bluetooth connection. For more information, see Bluetooth.
3 Job Operations

b. Set the Baud rate and Parity fields to match the corresponding parameters on the device that the General Survey software is communicating with.

Note – If the File format field is set to Comma Delimited (*.CSV, *.TXT), set the baud rate correctly on the external device. If appropriate, also set the flow control (xon/xoff).

If you are transferring a SDR33 .dc file, and you want the General Survey software to validate the checksum when the file is transferred, select On in the Checksum field.

4. The option in the File format field determines what you do next:
 - If you select one of the following options, you must choose the appropriate output format on the external device:
 - Comma delimited (*.csv, *.txt)
 - SDR33 coordinates
 - SDR33 DC
 - TDS CR5
 - Topcon (FC-5)
 - Topcon (GTS-7)
 - Trimble DC v10.7
 - Trimble DC v10.0
 - SC Exchange
 - Trimble Zeiss M5

 Use the Point name field to define how the point names in the data are received.

 Note –
 - In the case of the Trimble Zeiss M5 format the Markings (organization of the 27 character point number and code field) must conform to the following definitions:
 - Characters 12 - 15 holding the point code
 - Characters 16 - 27 holding the point name
 - General Survey point names have a maximum of 16 characters, but some points received from other devices can exceed this. If point names have 16 characters or more, choose either Truncate left or Truncate right.
 - If the Comma Delimited (*.CSV, *.TXT) option is selected, you can specify the format of the data that is received. Five fields appear: Point name, Point code, Northing, Easting, and Elevation.

 Using the options provided, select a position for each field. Select Unused if a particular value is not present in the file being received. For example:

 - **Point name** Field 1
 - **Point code** Unused
 - **Northing** Field 2
 - **Easting** Field 3
 - **Elevation** Field 4

To store the files:
1. When the format details are complete and the external device is ready to send, connect the cables and tap *Receive*.

The General Survey software prompts you to initiate sending on the external device. For more information about sending data, refer to the manual for the sending device.

When sending is initiated, the General Survey software starts to receive data, and a progress bar appears.

When the transfer is complete, the General Survey software automatically terminates the operation and saves the received data.

2. If it is clear that the transfer is complete but the operation has not been terminated, tap *Esc*. The following message appears:

Transmission interrupted. What would you like to do now? Do one of the following:

- Tap *Continue* to return the General Survey software to receive mode.
- Tap *Finish* to terminate the operation and save any received data to the current job.
- Tap *Cancel* to terminate the operation and discard any received data.

Note – When receiving ASCII data from an external device to a Trimble controller, you must follow the on-screen instructions. Do not connect the cable until you are prompted to do so, otherwise the transfer will fail.

Import and export fixed format files

Use these functions to:

- Import a fixed format file and convert it to a new Trimble job file
- Export a fixed format file from a Trimble job file and create a new file

The following formats are available:

- Comma delimited (*.csv, *.txt)
- SDR33 DC
- Trimble DC v10.7
- Trimble DC v10.0
- SC Exchange
- Trimble JobXML
- ESRI Shapefiles
- DXF

When you create files using *Export fixed format* or *Export custom format*, you can save the new format files to an existing folder on the controller, or create a new one. The default folder is the Export folder inside the current project folder. If you change the project folder, the system creates an export folder under the new project folder, and gives it the same name as the previous export folder.

Tap 🖼 to select an existing folder or create a new one.

If the Trimble JobXML option is selected, select the appropriate version number.
If the Comma Delimited (*.CSV, *.TXT) option is selected, you can specify the format of the data that is received. Five fields appear: **Point name**, **Point code**, **Northing**, **Easting**, and **Elevation**.

Using the options provided, select a position for each field. Select **Unused** if a particular value is not present in the file being received. For example:

- **Point name** Field 1
- **Point code** Unused
- **Northing** Field 2
- **Easting** Field 3
- **Elevation** Field 4

To select points to export, see **Selecting points**.

If **description fields** are enabled for the job, there are two additional fields to configure.

When the **Advanced Geodetic** option is enabled, you must set the **Coordinate view** to Grid or Grid (local). Set it to Grid when importing regular grid coordinates. When Grid (local) is selected, you can import a CSV file containing Grid (local) coordinates. You can assign the **Transformation** to grid coordinates when you import the points, or later using **Point manager**.

You can create a transformation when you import grid local points, but you cannot use the grid local points from the file you are about to import unless that file has already been linked to the current job.

Null elevations

If the comma-delimited file you are importing contains 'null elevations' that are defined as something other than null, for example a 'dummy' elevation such as -99999, you can configure the format of the **Null elevation** and the General Survey software converts these 'null elevations' to real null elevations inside the General Survey job file.

The **Null elevation** value in **Import fixed format files** is also used when points are imported or copied from linked CSV files.

Tip - Dummy 'null elevations' can also be converted to true null elevations using the 'NullValue' string in Custom ASCII Import.

Note –

- **Importing from a JobXML file to a Trimble job file is mainly used to transfer the coordinate system definition and design information. A JobXML file generated from a Trimble job contains all the raw data in the FieldBook section, and "the best" coordinate for each point from the job in the Reductions section. Only the data from the Reductions section is read into the new Trimble job file, raw observations are not imported.**

- **The General Survey software remembers where to export files only up to two folders below the project folder. If you send export files to subfolders deeper than that, you must set the folder each time you export a file.**

- **Use custom ASCII export to export Grid (local) coordinates. You cannot use Export fixed format files to export Grid (local) coordinates.**

To learn more about customizing your own ASCII format, see **Export custom format files**.
Duplicate point storage options when importing points

When importing a comma delimited file, use the Duplicate point action field to control how points of the same name as existing points in the job are imported. Select:

- **Overwrite** to store the imported points and delete all existing points of the same name.
- **Ignore** to ignore the imported points of the same name so that they are not imported.
- **Store another** to store the imported points and keep all existing points of the same name.

Exporting ESRI shapefiles

To create and transfer ESRI shapefiles from a Trimble controller to an office computer, using the Data Transfer utility, see Transferring ESRI shapefiles.

Note – You cannot use this option to transfer shapefiles that were created on the controller. To do that, you must use Windows Mobile Device Center.

To create ESRI shapefiles on the controller:

1. Select Jobs / Import / Export / Export fixed format.
2. Set the File format type to ESRI shapefiles.
3. Tap to select an existing folder or create a new one.
4. Set the file name, set the Coordinates to either Grid (northing/easting/elevation) or Lat/Long coordinates (local latitude/longitude/height), and then tap Accept.

Exporting DXF files

To create DXF files on the controller:

1. Select Jobs / Import / Export / Export fixed format.
2. Set the File format type to DXF.
3. Tap to select an existing folder or create a new one.
4. Set the file name and then select the DXF file format.
5. Select the entity types to export and then tap Accept.

Supported entity types:

- Points
- Feature coded line work
- Database line work

The DXF file is transferred to the folder specified.

Note –

- If a point has features and attributes assigned to it then all the attributes are added as attributes of the inserted point in the DXF file.
- Layers and Line color
 - When a feature code library (*.fxl) created by the Trimble Business Center software’s Feature Definition Manager is used, the fxl defined layers and colors are used in the DXF.
Job Operations

- Where an exact color cannot be matched it finds the next closest match.
- When a feature code library is created on the controller it uses the line color specified in the Trimble Access software.
- If a layer has not been defined, feature coded lines are assigned to the Lines layer and points are assigned to the Points layer. Database lines always go to the Lines layer.
- Only Solid and Dashed line types are currently supported.

Export custom format files

Use this menu to create custom ASCII files on the controller while in the field. Use the predefined formats or create your own custom formats. With custom formats, you can create files of almost any description. Use these files to check data in the field, or to produce reports, which you can transfer from the field to your client or to the office for further processing with the office software.

The predefined ASCII export formats available on the controller include:

- Check shot report
- CSV with attributes
- CSV WGS-84 lat longs
- GDM area
- GDM job
- ISO Rounds report
- MS coordinates
- Road-line-arc stakeout report
- Stakeout report
- Survey report
- Traverse adjustment report
- Traverse deltas report

These custom export ASCII formats are defined by the XSLT style sheet (*.xsl) definition files. They can be located in both the language folder and in [System files] folder. Translated custom export stylesheet files are typically stored in the appropriate language folder.

You can modify a predefined format to meet your specific requirements, or use it as a template to create a completely new custom ASCII export format.

In addition, go to Trimble Access Downloads (www.trimble.com/support_trl.aspx?Nav=Collection-62098) to download the following predefined formats:

- CMM coordinates
- CMM elevations
- KOF
- SDMS
Creating a report of survey data

1. Open the job that contains the data to export.
2. From the main menu, select Jobs / Import/Export / Export custom format.
3. In the File format field, specify the type of file to create.
4. Tap to select an existing folder or create a new one.
5. Enter a filename.
 By default, the File name field shows the name of the current job. The filename extension is defined in the XSLT style sheet. Change the file name and extension as required.
6. If more fields are displayed, complete them.
 You can use the XSLT style sheets to generate files and reports based on parameters that you define.
 For example, when generating a Stakeout report, the Stakeout horizontal tolerance and the Stakeout vertical tolerance fields define acceptable stakeout tolerances. When generating the report you can stipulate the tolerances, then any stakeout delta greater than the defined tolerances appears in color in the generated report.
7. To automatically view the file after you create it, select the View created file check box.
8. To create the file, tap Accept.

 Note – When the selected XSLT style sheet is applied to create the custom export file, the processing is all carried out in the program memory available on the device. If there is not enough memory to enable the creation of the export file, an error message will be displayed and no export file will be created.

Four factors will affect whether the export file can be created
- The amount of program memory available to the device.
- The size of the job being exported.
- The complexity of the style sheet being used to create the export file.
- The amount of data being written to the export file.

If it is not possible to create the export file on the controller, download the job as a JobXML file to a computer.

To create the export file from the downloaded JobXML file using the same XSLT style sheet, use the ASCII File Generator utility program. To download this utility, go to Trimble Access Downloads (www.trimble.com/support_trl.aspx?Nav=Collection-62098).

Creating XSLT stylesheets to define custom ASCII formats

You can use any text editor, such as Microsoft Notepad, to make minor changes to the predefined formats. However, to create a completely new custom ASCII format, you need some basic programming knowledge.

You cannot easily modify or create a style sheet on the controller. To successfully develop new style sheet definitions, work on an office computer using a suitable XML file utility program.

The predefined formats on the controller can also be downloaded from Trimble Access Downloads (www.trimble.com/support_trl.aspx?Nav=Collection-62098). You can edit them and then transfer
them to the controller using Windows Mobile Device Center. To retain the existing formats, save the modified formats with a new XSLT filename.

To develop your own XSLT style sheets, you need:

- An office computer.
- Basic programming skills.
- An XML file utility program with good debugging facilities.
- The JobXML file schema definition that provides the details of the JobXML format required to create a new XSLT style sheet.
- A General Survey Job or JobXML file that contains the source data.

The predefined XSLT style sheets, JobXML file schema and the ASCII File Generator utility can be downloaded from Trimble Access Downloads (www.trimble.com/support_trl.aspx?Nav=Collection-62098). For information on using this utility, refer to the ASCII File Generator Help.

The basic steps are:

1. Source a Job file or JobXML file from your Trimble controller. Use one of the following methods:

 - Transfer a Job file from the controller using Windows Mobile Device Center or Data Transfer and then use the job file directly with the ASCII File Generator.
 - Transfer a Job file from the controller using Windows Mobile Device Center or Data Transfer and then use the ASCII File Generator to create a JobXML file.
 - Create a JobXML file on the controller. From the Import/Export / Create ASCII file menu, set the File format field to Trimble JobXML. Transfer the JobXML file using Windows Mobile Device Center.
 - Create and transfer a JobXML file using Data Transfer. Make sure that the Files of type field is set to JobXML Files.

2. Create the new format using a predefined XSLT style sheet as a starting point and the JobXML schema as a guide.

3. To create the new custom ASCII file on the office computer, use the ASCII File Generator utility to apply the XSLT style sheet to the Trimble Job or JobXML file.

4. To create the custom ASCII files on the controller, copy the file to the [System files] folder on the controller.

Note –

- XSLT style sheet definition files are XML format files.
- The predefined style sheet definitions are provided in English. Modify these files as required to your own language.
- During installation, new versions of the predefined ASCII import and export formats are installed to the controller. If you have created new custom import or export formats or modified and renamed the existing formats then these files are now reinstalled to the controller during the Transfer Downloaded Trimble Files step of the upgrade process. If you modified the predefined formats and saved them with the same name, they will be replaced when you upgrade the controller. The downloaded files still exist on your office computer. If you create new formats, or customize the predefined formats, Trimble recommends you save
the files with a new name. Use the Trimble Data Transfer utility or Windows Mobile Device Center to transfer these files back onto the controller once the upgrade is complete.

- Style sheets must be created according to the XSLT standards as defined by the World Wide Web Consortium (W3C). For details, go to www.w3.org.
- The Trimble JobXML file schema definition provides details of the JobXML file format.

Creating a custom ASCII export file with Grid (local) coordinates

Export custom format is the only way to export points with Grid (local) coordinates.

Use the Grid (local) coordinates XLST style sheet available on the controller to create a custom ASCII export comma-delimited file with Grid (local) and Grid coordinates. Or modify that style sheet to create your own custom format.

There are two types of Grid (local) coordinates that can be output; the original entered grid (local) coordinates, or the computed display grid (local) coordinates. When creating the export file, the software prompts you for the required output.

The computed grid (local) coordinates are derived by taking the keyed-in or computed grid coordinates and then applying the display transformation. You must set the display transformation required in General Survey before you export the ASCII file. To do this in Review job, select a point, go to Options, set the **Coordinate view** to Grid (local) and then select a **Transformation for grid (local) display**. Alternatively, set the display transformation using **Point manager**.

Import custom format files

Use this menu to import custom ASCII files into your current job. You can use the predefined formats or create your own custom format to import fixed-width or delimited ASCII files.

You can import the following data using this option:

- Point name
- Code
- Description 1 and Description 2
- Notes attached to points
- Grid coordinates
- WGS84 geographic coordinates (degrees minutes and seconds, or decimal degrees)

To be successfully imported, points must have a height.

- Local geographic coordinates (degrees minutes and seconds, or decimal degrees)

To be successfully imported, points must have a height

- Line definitions

Before you import, line start and end points must exist in the database.

Line definitions include the following information: start point name, end point name, start station, station interval, azimuth, and length.
The predefined ASCII import formats available in the controller include:

- CSV Grid points E-N
 Point Name, Easting, Northing, Elevation, Code
- CSV Grid points N-E
 Point Name, Northing, Easting, Elevation, Code
- CSV Lines
 Start Point Name, End Point Name, Start Station, Station Interval
- CSV WGS-84 Lat-long points
 Point Name, Latitude, Longitude, Height, Code

These custom import ASCII formats are defined by .ixl import definition files that are stored in the [System files] folder.

Importing an ASCII file using a predefined file format

1. Transfer the file to be imported into the project folder on the controller.
2. Open or create the job that you want to import the data into.
3. From the main menu, select Jobs / Import/Export / Import custom format. (If you are using the Mines application, select Jobs / Import custom format.)
4. In the File format field, specify the type of file to import.
5. Tap 📚 to select an existing folder or create a new one.
6. In the File name field, select the file to import. All files in your data folder with the file extension specified in the format file (by default CSV) appear in the list.
7. If you are importing points, select or clear, as required, the Import points as control check box to specify if the imported points should be control points.
8. To import the file, tap Accept. After import, a summary box shows how many items were imported and how many were discarded.

Creating custom ASCII import format files

Custom ASCII import format files are stored on the controller in the [System files] folder, with the extension *.ixl. You can make simple edits to existing format files on the controller using Microsoft Pocket Word software. If you have majors edits or you want to create new format files, use a text editor on a desktop computer.

Copying job files to a different location

Use this option to copy a job to a new location such as an external drive. Files associated with the job that were collected during the survey (for example, image and scan files) can be copied at the
same time.
This option is especially useful when copying job files to a USB drive to transfer jobs from one controller to another. To copy job files to the current <username> folder on the other controller, use Copy job files from.

1. From the main menu, tap Jobs / Copy job files to.
2. Browse to and select the job to copy from.
3. Select the destination folder for the copied job.
4. To include all files starting with the same <jobname> in the Export folder, select the Include exported files check box.
5. To create a JobXML file, select the Create JobXML file check box.
6. To copy project files associated with the job, select the appropriate check box(es).
7. Tap Copy.

Note –
- Broadcast RTCM transformation (RTD) files associated with the job are not copied with the job. Users of RTD files should ensure the grid file on the controller that the data is being copied to contains grid data that covers the area of the copied job.

Copying job files from a different location

Use this option to copy a job from a location such as an external drive into Trimble Access. Files associated with the job that were collected during the survey (for example, image and scan files) can be copied at the same time.

Jobs are copied into the current <username> folder on the controller.

1. From the main menu, tap Jobs / Copy job files from.
2. Browse to and select the job to copy from.
3. To include all files starting with the same <jobname> in the Export folder, select the Include exported files check box.
4. To copy project files associated with the job, select the appropriate check box(es).
5. Tap Copy.

Note –
- Broadcast RTCM transformation (RTD) files associated with the job are not copied with the job. Users of RTD files should ensure the grid file on the controller that the data is being copied to contains grid data that covers the area of the copied job.
Key In

Key in menu

This menu lets you enter data into the General Survey software from the keypad. You can key in:

- Points
- Lines
- Arcs
- Alignments (polylines)
- Notes

Keying in points

With this function, you can enter coordinates to define a new point:

1. From the main menu, select *Key in / Points*.
2. Enter the point name.
3. Enter the values. Depending on the coordinate view and the controller, you may need to view the computed grid coordinates from the second page.
4. To set the search class for the point to *Control*, select the *Control point* check box. Leave the check box unselected to set the search class to *Normal*.

 Tip - To change the search class after the point has been stored, select *Edit / Coordinates* in the *Point manager*.
5. Tap *Store* to store the point.

You can also key in a point from the map.
To configure the *Coordinate view*, tap *Options*.

Station and offset

When you key in a point by a *Station and offset* value, select from the *Type* field the entity the *station and offset* values are relative to.

Grid (local)

When you key in a point by Grid (local), from the *Transformation* field, select:

- an existing transformation
- create a *New transformation*
- *None* to define the transformation later

From the map

1. Make sure the current selection is cleared.
2. Tap and hold on the area of the map to which you want to add the point.
3. From the shortcut menu, select *Key in point*.
4. Complete the fields as required.

Keying in lines

Use this function to define a new line by one of the following methods:

- Two points
- Brng-dist from a point

Defining a new line by using two points

1. Do one of the following:
 - From the map, select the *Start point (1)* and the *End point (2)*. (See the diagram below.) Tap and hold on the map and select *Key in line* from the shortcut menu.
 - Select *Key in / Line* from the main menu. In the *Method* field, select Two points. Enter the names of the *Start point* and the *End point*.
2. Use *Options* to specify ground, grid, or sea level distances.
3. Enter the name of the line.
4. Enter values for the *Start station* and the *Station interval*.
Defining a new line using a brng-dist from a point

1. From the main menu, select Key in / Line.
2. Use Options to specify ground, grid or sea level distances.
3. Enter the name of the line.
4. In the Method field, select Brng-dist from a point.
5. Enter the name of the Start point (1), the azimuth (2), and the length of line (3). See the diagram below.
6. Specify the Grade between the start and end points.
7. Enter values for the Start station and the Station interval.

Keying in arcs

Use this function to define a new arc by one of the following methods:
- Two points and radius
- Arc length and radius
- Delta angle and radius
- Intersect point and tangents
- Two points and center point
- Three points
The following diagram and table explains the terms used to define features of an arc.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Center point</td>
<td>Back tangent</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Delta angle</td>
<td>Intersection point</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Radius</td>
<td>Tangent length</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Chord length</td>
<td>To point</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>From point</td>
<td>Forward tangent</td>
<td></td>
</tr>
</tbody>
</table>

The back tangent value (6) is related to the direction (right in the above diagram) in which the station or chainage increases. For example, when you stand at the intersection point (7) looking in the direction of increasing station or chainage, the forward tangent (10) is in front of you and the back tangent (6) is behind you.

The direction field defines whether the arc turns to the left (counterclockwise) or right (clockwise) from the start point (1) to the end point (2). The following diagram shows both a left (3) and right (4) arc.

Defining an arc using two points and a radius

1. From the main menu, select *Key in / Arcs*.
2. Use *Options* to specify ground, grid, or sea level distances.
3. Enter the name of the arc.
4. In the *Method* field, select *Two points and radius*.
5. As shown in the diagram below, enter the name of the start point (1), the name of the end point (2), and the radius (3) of the arc.

6. Specify the direction of the arc.

7. Enter values for the Start station and the Station interval.

8. If required, select the Store center point check box and then enter a point name for the centre point.

Defining an arc using the arc length and radius

1. From the main menu, select Key in / Arc.
2. Use Options softkey to specify ground, grid, or sea level distances and the grade entry method.
3. Enter the name of the arc.
4. In the Method field, select Arc length and radius.
5. As shown in the diagram below, enter the name of the start point (1), the back tangent (2), the radius (3) and the length of the arc.

6. Specify the direction of the arc and the grade between the start and end points.

7. Enter values for the Start station and the Station interval.

8. If required, select the Store center point check box and then enter a point name for the centre point.
Defining an arc using the delta angle and radius

1. From the main menu, select Key in / Arc.
2. Use Options to specify ground, grid, or sea level distances and the grade entry method.
3. Enter the name of the arc.
4. In the Method field, select Delta angle and radius.
5. As shown in the diagram below, enter the name of the start point (1), the back tangent (2), the radius (3) and the turned angle (4) of the arc.

6. Specify the direction of the arc and the grade between the start and end points.
7. Enter values for the Start station and the Station interval.
8. If required, select the Store center point check box and then enter a point name for the centre point.

Defining an arc using the intersect point and tangents

1. From the main menu, select Key in / Arc.
2. Use Options to specify ground, grid or sea level distances.
3. Enter the name of the arc.
4. In the Method field, select Intersect point and tangents.
5. As shown in the diagram below, enter the name of the intersection point (1), the back tangent (2), the forward tangent (3) and the radius (4) of the arc.

6. Enter values for the Start station and the Station interval.
7. If required, select the *Store center point* check box and then enter a point name for the centre point.

Defining an arc using two points and a center point

1. From the main menu, select *Key in / Arc*.
2. Use *Options* to specify ground, grid or sea level distances.
3. Enter the name of the arc.
4. In the *Method* field, select *Two points and center point*.
5. Specify the direction of the arc.
6. As shown in the diagram below, enter the name of the *Start point* (1), the *End point* (2), and the *Center point* (3) of the arc.

7. Enter values for the *Start station* and the *Station interval*.

Defining an arc using three points

1. From the main menu, select *Key in / Arc*.
2. Use *Options* to specify ground, grid or sea level distances.
3. Enter the name of the arc.
4. In the *Method* field, select *Three points*.
5. As shown in the diagram below, enter the name of the *Start point* (1), the *Point on arc* (2), and the *End point* (3) of the arc.

6. Enter values for the *Start station* and the *Station interval*.
7. If required, select the *Store center point* check box and then enter a point name for the centre point.

The grade of the arc is determined by the elevations of the arc start and end points.

Keying in alignments

Use the General Survey software to create, offset, and stake out alignments, which are sometimes known as polylines.

Alignments always have a horizontal component; the vertical component is optional. When editing an alignment, you can edit the horizontal and vertical components separately. However, if you edit the horizontal alignment, you must check if the vertical alignment also needs editing.

Note – To create or edit a road with the option to include templates and superelevation and widening records, use the Roads software. For more information on the Roads software, go to http://apps.trimbleaccess.com/Trimble/Roads.

To create an alignment or to offset an existing alignment in the General Survey software, use one of the following methods:

- Key in point name ranges
- Select a series of points in the map
- Select one or more polylines in graphical view
- Select a combination of points, lines, arcs, polylines, or alignments in the map
- Create an alignment from an existing alignment by offsetting it
- Create an alignment from an existing alignment (RXL or LandXML) in the map by offsetting it

Creating an alignment by keying in a point name range

1. From the main menu, select *Key in / Alignments*.

2. To key in a new alignment, enter the point names that define the alignment (if the *Key in alignment* screen is displayed). If the *Select an alignment* screen is displayed, tap *New* to enter the point range.

The following name range techniques are supported:

<table>
<thead>
<tr>
<th>Enter</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,3,5</td>
<td>Creates a line between points 1 to 3 to 5</td>
</tr>
<tr>
<td>1-10</td>
<td>Creates lines between all points from 1 through 10</td>
</tr>
<tr>
<td>1,3,5-10</td>
<td>Creates a line between points 1 to 3, to 5, and 5 through 10</td>
</tr>
<tr>
<td>1(2)3</td>
<td>Creates an arc between points 1 and 3, through point 2</td>
</tr>
<tr>
<td>1(2,L)3</td>
<td>2 (Center point), L (left) or R (right)</td>
</tr>
<tr>
<td></td>
<td>Creates a Left hand arc between points 1 and 3, with point 2 as the center point</td>
</tr>
<tr>
<td>Enter</td>
<td>Result</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>1(100,L,S)3</td>
<td>1 to 3, radius=100, L (left) or R (right), L (large) or S (small) Creates a Left hand Small arc between points 1 and 3 with a radius of 100</td>
</tr>
</tbody>
</table>

3. To store the alignment, select the *Store alignment* check box, enter an *Alignment name*, enter a String name (if required) and a *Start station* and *Station interval* and then tap *Store*.

Alignments are stored as RXL files. If you save the alignment, you can easily stake it again, view it in the map, and share it with other jobs and with other controllers.

4. To offset the alignment, tap *Offset*.

5. If the *Store alignment* check box has been selected, tap *Store*.

Creating an alignment by selecting a series of points in the map

1. From the map, select the points. The points can be from the current job, a linked job, or a linked CSV file. For more information, see Selecting features from the map.

2. Tap and hold on the map screen, and then select *Key in alignment*.

3. Select *Store alignment* and then enter a name, start station, and station interval.

4. To offset the alignment, tap *Offset*.

5. Tap *Store*.

Creating an alignment by selecting a series of points, lines, and arcs in the map

1. From the map, go to the *Layers* screen, select the file containing the linework for the alignment and then make active the appropriate layer(s) that will be used to define the horizontal component (and the vertical component if the linework has elevations). For more information, see Adding data files as map layers.

2. Select the features that will make up the alignment. For more information, see Selecting features from the map.

3. Tap and hold on the map screen, and then select *Key in alignment*.

4. Select *Store alignment* and then enter a name, start station, and station interval.

5. To offset the alignment, tap *Offset*.

6. Tap *Store*.

Creating a new alignment from an existing alignment

1. From the main menu, select *Key in / Alignments*. If the *Select an alignment* screen is not visible, tap *Select*.

2. Tap an alignment to select it.

3. To offset the alignment, tap *Offset*.
Creating a new alignment from an existing alignment in the map

1. In the map, tap an alignment to select it.
2. Tap and hold on the map screen, and then select *Key in alignment*.
3. To offset the alignment, tap *Offset*.

Offsetting an alignment

You can offset an alignment when you create it or you can quickly create a new alignment by selecting an existing one and offsetting it.

1. From the *Key in alignment* screen, select the alignment to offset from or tap *New* and enter the details for a new alignment.
2. Tap *Offset*.
3. Enter the offset distance. To offset to the left, enter a negative value.
4. To store the offset alignment, enable the *Store alignment* check box, enter an *Alignment name*, enter a *String name*, if required, and then tap *Next*. The alignment is stored as an RXL file.
5. To store node points at the vertices of the offset alignment, enable the *Store points at nodes* check box, enter a *Start point name*, enter a *Code*, if required, and then tap *Next*.
 Selecting *Next* stores the alignment, if the *Store alignment* check box is enabled, and takes you to stakeout. To store an alignment without going to stakeout, tap *Store*.
6. You can stake an alignment by the following methods:
 - Station on alignment
 - Side slope from alignment
 - Station/skew offset from alignment

An offset alignment will have a vertical component if the vertical geometry of the original alignment coincides with the horizontal geometry and the vertical geometry consists only of points. The offset vertical geometry cannot include curves. If the vertical geometry of an alignment cannot be offset, only the horizontal component will exist in the offset alignment. You cannot offset an alignment that includes transitions.

Keying in notes

You can enter a note in the General Survey database at any time. To do this:

1. To access the *Key in note* screen, do one of the following:
 - From the main menu, select *Key in / Notes*.
 - Tap *Favorites / Key in note*.
 - On the controller keyboard, press CTRL + N.
2. Type in the details to be recorded. Alternatively tap *T/Stamp* to generate a record of the current time.
3. To store the note do one of the following:
4 Key In

- Tap Store to store the note in the database.
- Tap Prev to attach the note to the previous observation.
- Tap Next to attach the note to the next observation to be stored.

Note – When you use Next, the note is only stored with the next observation if another observation is stored during the current survey. If the survey is ended without storing another observation the note is discarded.

4. To exit Key in notes, tap Esc. Alternatively, if the Note form is empty, tap Store.

If a feature code list is already selected for the job, you can use codes from the list when keying in a note. From the Note screen, press Space to display the feature code list. Select a code from the list or type the first few letters of the code.

In Review, tap Note to add a note to the current record.

In Point manager, scroll to the right and tap in the Note field to add a note to the point record.
Cogo menu

This menu lets you carry out Coordinate Geometry (Cogo) functions. You can use the menu options to calculate distances, azimuths, and point positions by various methods.

When a scan point measured using a Trimble SX10 scanning total station is used in a Cogo calculation, a database point at the same position is created.

For some calculations, you must define a projection, or select a Scale factor-only coordinate system. You can display ellipsoid, grid, or ground distances by changing the Distances field in the Cogo settings screen.

To perform Cogo calculations in a No projection / No datum coordinate system, set the Distances field to Grid. The General Survey software then performs standard Cartesian computations. If the grid distances you enter are distances on the ground, the new computed grid coordinates will be ground coordinates.

Note – When the Distances field is set to Ground or Ellipsoid, the General Survey software attempts to perform calculations on the ellipsoid. Because there is no relationship established at this point, the system cannot compute coordinates.

You can compute a distance between two points directly in a distance field. To do this, enter the point names in the distance field, separated by a hyphen. For example, to compute the distance between points 2 and 3, enter "2-3". This method works with most alphanumeric point names, but it does not support point names that already contain a hyphen.

You can compute an azimuth from two points directly in an azimuth field. To do this, enter the point names in the Azimuth field, separated by a hyphen. For example, to compute the azimuth from point 2 to point 3, enter "2-3". This method works with most alphanumeric point names, but it does not support point names that already contain a hyphen.

For more information, see:
- Compute inverse
- Compute point
- Compute volume
- Compute distance
- Compute azimuth
- Compute average
- Area calculations
Arc solutions
Triangle solutions
Subdivide a line
Subdivide an arc
Transformations
Traverse
Taped distances
Calculator

Compute inverse

To compute the inverse between two existing points:

1. From the map, select the From point (1) and To point (2), as shown in the diagram below.
2. Tap and hold on the map and select Compute inverse from the shortcut menu. Alternatively, select Cogo / Compute inverse from the main menu.
3. The following values are computed:
 - azimuth (3)
 - horizontal distance (4)
 - the change in elevation, slope distance and grade between the two points
 - delta north (5) and east (6)

Compute point

Use this Cogo function to calculate the coordinates of an intersection point from one or more points, a line, or an arc. You can store the results in the database.

Use Options to specify ground, grid, or sea level distances.

To measure distances or offsets using a laser rangefinder, you must first connect the laser rangefinder to the controller and configure the laser rangefinder in your survey style. For more information, see Configuring a survey style to use a laser rangefinder. If the Auto measure field in the survey style Laser rangefinder option is set to Yes, the General Survey software instructs the
laser to take a measurement when you tap Laser. To insert a distance into a Distance, H.Dist or an Offset field, tap Laser from the pop-up menu and measure the distance with the laser. See also Measuring points with a laser rangefinder.

WARNING - In general, do not compute points and then change the coordinate system or perform a calibration. If you do, these points will be inconsistent with the new coordinate system. An exception to this is points computed using the Brng-dist from a point method.

Calculate coordinates using one of the following methods:

- Brng-dist from a point
- Turned angle and distance
- Brng-dist intersect
- Brng-brng intersect
- Dist-dist intersect
- Four point intersection
- From a baseline
- Project point to line
- Project point to arc

Note –
- *When entering an existing point name you can select from the list, perform a fast fix or measure a point. Fast fix stores an automatic rapid point with a temporary point name.*
- *If the measured points were measured using GNSS, the coordinates of the point can only be displayed as grid values if a projection and a datum transformation are defined.*
- *For all methods when the point is stored use the Store as field to specify if the calculated point is to be stored as WGS84, Local or Grid coordinates values.*
- *If you use the Four point intersection method or the From a baseline method and then change the antenna height record for one of the source points, the coordinates of the point will not be updated.*

Brng-dist from a point

To calculate the coordinates of an intersection using the Brng-dist from a point method:

1. From the main menu, select Cogo / Compute point.
2. Enter a Point name.
3. In the Method field, select Bearing and distance.
4. In the Start point field, use the advanced pop-up arrow (pestic) to select either a Radial or Sequential measurement method. When Sequential is selected the Start point field is automatically updated to the last stored intersection point (see diagrams below).
5. Set the Azimuth origin to either Grid 0°, True, Magnetic, or Sun (GNSS only).
6. As shown in the diagrams below, enter the name of the Start point (1), the azimuth (2) and the horizontal distance (3).
To adjust the entered azimuth value:
- In the **Azimuth** field, use the pop-up menu to adjust the azimuth by $+90^\circ$, -90°, or $+180^\circ$.
- Enter a value in the **Delta azimuth** field. The **Computed azimuth** field displays the azimuth adjusted by the delta azimuth.

7. Tap **Calc** to calculate the intersection point (4).
8. Store the point in the database.

```
Radial:                      Sequential:

1  2
   3  4
```

To compute the misclosure of a loop of points:
1. Give the last point the same name as the first start point.
2. Tap **Calc** for the point coordinates.

When you tap **Store**, the loop misclosure appears on the screen. Store the last point as a check to avoid overwriting the first point.

Turned angle and distance

To calculate the coordinates of an intersection using the turned angle and distance method:
1. From the main menu, select **Cogo / Compute point**.
2. Enter a **Point name**.
3. In the **Method** field, select Turned angle and distance.
4. In the **Start point** field, tap the advanced pop-up arrow (▲), then select either a **Radial** or **Sequential** measurement method. When **Sequential** is selected, the Start point name automatically updates to the last stored intersection point (see diagrams below).
5. In the **End point** field, tap the advanced pop-up arrow (▲), then select either an **Azimuth** or **End point** to define a reference orientation.

When using the sequential method, the reference orientation for new points moving forward is the computed reverse azimuth from the previous turned angle.
6. As shown in the diagrams below, enter the name of the Start point (1), the azimuth (2) and the horizontal distance (3).
7. Tap **Calc** to calculate the intersection point (4).
8. Store the point in the database.
Brng-dist intersect

To calculate the coordinates of an intersection using the Brng-dist intersect method:

1. From the main menu, select Cogo / Compute point.
2. Enter a Point name.
3. In the Method field, select Brng-dist intersection.
4. As shown in the diagram below, enter the name of Point 1 (1), the azimuth (2), the name of Point 2 (3) and the horizontal distance (4).
5. Tap Calc.
6. There are two solutions (5,6) for this calculation; tap Other to see the second solution.
7. Store the point in the database.

Brng-brng intersect

To calculate the coordinates of an intersection using the Brng-brng intersect method:

1. From the main menu, select Cogo / Compute point.
2. Enter a Point name.
3. In the Method field, select Brng-brng intersect.
4. As shown in the diagram below, enter the name of Point 1 (1), the azimuth from point one (2), the name of Point 2 (3), and the azimuth from point two (4).
5. Tap Calc to calculate the intersection point (5).
6. Store the point in the database

Dist-dist intersect

To calculate the coordinates of an intersection using the Dist-dist intersect method:
1. From the main menu, select *Cogo / Compute point*.
2. Enter a *Point name*.
3. In the *Method* field, select Dist-dist intersect.
4. As shown in the diagram below, enter the name of Point 1 (1), the horizontal distance (2), the name of Point 2 (3) and the horizontal distance (4).
5. Tap *Calc*.
6. There are two solutions (5,6) for this calculation; tap *Other* to see the second solution.
7. Store the point in the database.

Four point intersection

To create a point using the four point intersection method:
1. From the main menu, select *Cogo / Compute point*.
2. Enter a *Point name*.
3. In the *Method* field, select Four point intersection.
4. As shown in the diagram below, enter the names of the start point of line 1 (1), the end point of line 1 (2), the start point of line 2 (3) and the end point of line 2 (4).
5. Enter any change in the vertical position as a vertical distance from the end of line 2.
6. To calculate the offset point (5), tap *Calc*.
The two lines do not have to intersect, but they must converge at some point, as shown below.

From a baseline

To create a point using the From a baseline method:

1. From the main menu, select *Cogo / Compute point*.
2. Enter a *Point name*.
3. In the *Method* field, select *From a baseline*.
4. As shown in the diagram below, enter the names of the start point (1) and the end point (2) of the baseline.
5. Enter a *Distance* and select the *Distance direction* method (5, 6, 7, or 8).
6. Enter the offset distance and select the *Offset direction* (3 or 4).
7. Enter the vertical distance.
 The vertical distance is dependent on the *Distance direction*. If the direction is relative to the start point, the elevation of the computed point is the elevation of the start point plus the vertical distance. Similarly, if the direction is relative to the end point, the elevation of the computed point is the elevation of the end point plus the vertical distance.
8. To calculate the offset point (9), tap *Calc*.
Project point to line

To compute a point at a position along a line that is perpendicular to another point:

1. From the main menu, select *Cogo / Compute point*.
2. Enter a *Point name*.
3. In the *Method* field, select *Project point to line*.
4. Enter the *Point to project* (1).
5. Enter the *Line name* (2) or enter the *Start point* and *End point* to define the line.
6. Tap *Calc*.

 The following values are computed:
 - coordinates of the point (3)
 - horizontal distance along the line (4)
 - horizontal and slope distance, azimuth, grade, vertical distance, and delta north (5) and east (6) values from the selected point (1) to point (3)

7. Tap *Store* to store the point in the database.

![Diagram of Project point to line](image)

Project point to arc

To compute a point at a position along an arc that is perpendicular to another point:

1. From the main menu, select *Cogo / Compute point*.
2. Enter a *Point name*.
3. In the *Method* field, select *Project point to arc*.
4. Enter the *Point to project* (1).
5. Enter the *Arc name* or key in a new arc.
6. Tap *Calc*.

 The following details appear: The coordinates of the point (5), the horizontal distance along the arc (3), and horizontal distance from the arc (4).

7. Tap *Store* to store the point in the database.
Area calculations

Area calculations is a graphical utility that enables you to compute an area and then to subdivide that computed area. When subdividing areas, new intersection point(s) are computed and stored.

Note – *To compute a Surface area you must use Compute volume.*

The following methods can be used to subdivide the area:

- Parallel line
- Hinge point

The easiest way to define the area to be computed and subdivided is to tap and hold the *Area calculations* option from the Map. You can then use the following entities:

- points, lines, and arcs from the current job
- points, lines, arcs, and polylines from active map files
- points from a linked job, CSV and TXT files
- a combination of the above

You can also start *Area calculations* from the Cogo menu. However, you can then only use points to define the area.

When you select entities to define the area, you must select them in the correct order.

When you select lines, arcs, or polylines, you must select them in the correct direction.

To compute and then subdivide an area enclosed by points displayed in the map:

1. From the map, select the points on the perimeter of the area to be calculated. Use the order that they occur on the perimeter.
2. Tap and hold on the map and then select *Area calculations* from the menu.
 The computed area and the perimeter appear. The arrows on the lines indicate the order in which the points were selected.
 Note – *The computed area varies according to the Distance display setting.*
3. Do one of the following:
 - To store the area, enter a name, if required, and then tap *Store*. The area is saved and you exit *Area calculations*.
 - To subdivide the area:
a. Tap the subdivide method - Parallel or Hinge.
b. Enter the New area to subdivide from the total area.
c. If you use the Parallel method, tap the line that defines the parallel line.
 If you use the Hinge method, tap the point that defines the hinge point.
 The New area that you entered is shaded blue. New points are displayed with a red
circle, and labeled Pt1, Pt2, and so on.
d. If the subdivided area you require is the complement of the area displayed, tap the
 Swap area button to switch areas.
e. Tap Continue.
f. To store the intersection point(s), enter their name(s) and then tap Save.
 If you do not want to save the intersection point(s), do not name them.
g. Tap Close.

To see details about the original area and perimeter, new area and perimeter, new intersection
points, and an image of the area, go to Review job.

The following figure shows an example of a subdivided area using the Hinge method.

Note –
- In area calculations, you can use polylines from a DXF or STR file, but you cannot use General
 Survey alignments or roads.
- If lines intersect or cross over, the General Survey software attempts to compute the correct
 area and subdivide the area, but in some cases may give the wrong results.
 Make sure that the graphical image looks correct and then double-check the results if you
 have concerns that they may not be correct.

Compute volume

You can use Compute Volume to calculate volumes from surfaces stored in Triangulated Terrain
Model (*.ttm) files. Import the *.ttm files from your office software or generate them using the
Create surface option from the map in General Survey. The following volume calculation methods
are available:
- Above an elevation
- Void volume
- Surface to elevation
Above an elevation
Calculates the volume of a single surface above the specified elevation. Only the cut volume is computed. Haul bulkage can be applied if necessary.

Void volume
Calculates the volume of material needed to fill a surface up to a specified elevation. Shrinkage can be applied if necessary.

Surface to elevation
Calculates the cut and fill volumes between a single surface and a specified elevation. Where the surface is below the elevation, fill will be computed; where the surface is above the elevation, cut will be computed. Haul bulkage and/or shrinkage can be applied if necessary.

Note – Volumes are computed only in areas where the initial and final surfaces overlap.

Stockpile/depression
This works in a similar way to Surface to surface except with only one surface. The selected surface is treated as the final surface and the initial surface is defined from the perimeter points of the selected surface. Where the surface is above the perimeter surface, then cut is computed (stockpile); where the surface falls below the perimeter surface, then fill is computed (depression). Haul bulkage and/or shrinkage can be applied if necessary.

Surface area
Calculates the surface area, and using the specified depth can calculate the volume.

Haul bulkage and shrinkage factors
Some volume calculation methods allow you to apply haul bulkage and/or shrinkage factors to the calculated volumes.
A haul bulkage factor allows for the expansion of cut material as it is excavated. Haul bulkage is defined as a percentage.

A shrinkage factor allows for compaction in fill material. Shrinkage is defined as a percentage.

After haul bulkage and/or shrinkage have been applied, the software shows the In situ volume (original volume) and the Adjusted volume:

- The Adjusted cut volume is the cut volume with the haul bulkage factor applied to it.
- The Adjusted fill volume is the fill volume with the shrinkage factor applied to it.

Compute distance

Calculate a distance using one of the following methods:

- Between two points
- Between point and line
- Between point and arc

To access Compute distance, do one of the following:

- From the Cogo menu, tap Compute distance.
- From the Cogo calculator, tap Distance.
- From the map, select the point and the line or arc and then tap and hold and select Compute distance.

Note – If you select two points on the map, Compute distance is not available from the tap and hold menu. Select Compute inverse instead.

You can compute a distance using keyed-in data, points stored in the database, or data in a map layer. For keyed in data or points stored in the database, the compute distance results are stored in the database. For data in a map layer, compute distance results are stored as a note record.

Note – You can enter data in different units. For example, if you add a distance in meters to a distance in feet, the answer is returned in whatever format you specified in the job configuration.

Between two points

In the Compute distance screen:

1. Select Between two points in the Method field.
2. Enter the From point and the To point.
3. The distance between the two points is calculated.

Tip - You can compute a distance between two points in the database directly in a distance field. To do this, enter the point names in the distance field, separated by a hyphen. For example, to compute the distance between points 2 and 3, enter "2-3". This method works with most alphanumeric point names, but it does not support point names that already contain a hyphen.
Between point and line

In the Compute distance screen:

1. Make sure Between point and line is selected in the Method field.
2. If required, enter the Point name (1) and the Line name (2) as shown in the diagram below.

 Tip - If the line does not already exist, tap the advanced pop-up arrow and select Two points. You can then enter the start point and end point to define the line.
3. The distance along the line (3) and the perpendicular distance (4) to the line is calculated. The distance along the line is from the point specified (5).

![Diagram of point and line distances](image)

Between point and arc

In the Compute distance screen:

1. Make sure Between point and arc is selected in the Method field.
2. If required, enter the Point name (1) and the Arc name (2) as shown in the diagram below.
3. The distance along the arc (3) and the perpendicular distance (4) to the arc is calculated. The distance along the arc is from the point specified (5).

![Diagram of point and arc distances](image)

Compute azimuth

You can use keyed-in data, and points stored in the database, to calculate an azimuth by various methods. You can also store the results in the database. For some methods, you have to tap Calc to display the results.

The data that you enter can have different units. For example, you can add an angle in degrees to an angle in radians - the answer is returned in whatever format you specified in the job configuration.
Calculate an azimuth using one of the following methods:

- Between two points
- Bisected azimuths
- Bisected corner
- Azimuth plus angle
- Azimuth to line offset

Between two points

To calculate the azimuth between two points:

1. From the main menu, select *Cogo / Compute azimuth*.
2. In the *Method* field, select *Between two points*.
3. As shown in the diagram below, enter the name of the From point (1) and the To point (2).
4. The azimuth between them (3) is calculated.

![Diagram showing azimuth between two points](image)

Tip - You can compute an azimuth from two points in the database directly in an azimuth field. To do this, enter the point names in the *Azimuth* field, separated by a hyphen. For example, to compute the azimuth from point 2 to point 3, enter "2-3". This method works with most alphanumeric point names, but it does not support point names that already contain a hyphen.

Bisected azimuths

To calculate bisected azimuths:

1. From the main menu, select *Cogo / Compute azimuth*.
2. In the *Method* field, select *Bisected azimuths*.
3. As shown below, enter values for *Azimuth 1* (1), and *Azimuth 2* (2).
The following calculations appear: The computed azimuth halfway between them (3), and the computed angle, measured clockwise between azimuth 1, and azimuth 2.

![Diagram](image)

Bisected corner

To calculate a bisected corner azimuth:

1. From the main menu, select *Cogo / Compute azimuth*.
2. In the *Method* field, select Bisected corner.
3. As shown below, enter the names of the *Side point 1* (1), the *Corner point* (3), and *Side point 2* (2).

 The following values are computed:
 - azimuth (4), halfway between Side point 1 and Side point 2, from the Corner point (3)
 - inside angle (5) and outside angle (6)
 - distance from the corner point to the two side points and the distance from one side point to the other
 - azimuth from the corner point to the two side points
 - angle between the corner point and each side point, as well as the opposite angle (7)

 ![Diagram](image)

Azimuth plus angle

To calculate the azimuth plus angle:

1. From the main menu, select *Cogo / Compute azimuth*.
2. In the *Method* field, select Azimuth plus angle.
3. As shown in the diagram below, enter the *Azimuth* (1) and the *Turned angle* (2).
4. The sum of the two (3) is calculated.

Azimuth to line offset

To calculate the azimuth to line offset:
1. From the main menu, select Cogo / Compute azimuth.
2. In the Method field, select Azimuth to line offset.
3. As shown below, enter the name of the line (1), the station (2) and the horizontal offset (3).
 The following calculations appear: The computed azimuth (4), from the start point of the line to the offset point, and the computed angle, measured clockwise between the line (1), and the Azimuth (4).
 Tip - If the line does not already exist, tap the advanced pop-up arrow and then select *Two points*. You can then enter the start point and end point to define the line.

Compute average

Use the *Compute average* option to compute and store the average position for a point that has been measured more than once.

Two or more angles only observations from two different known points can be 'averaged' to compute the coordinates of the intersection point. To 'average' the observations they must be stored with the same point name.

Enter the name of the point to compute the average position for into the *Point name* field. You can select the point name from a list using the *pop-up menu* for the field.
If the point you entered has only one position fix, or has been stored as a control point, then an error message appears to tell you that an average position cannot be computed.

Once you enter a point name for which an average position can be computed, General Survey searches the database to find all the positions for that point. Once computed, the average point grid position appears, along with the standard errors for each ordinate.

If there are more than two positions for the point, a Details softkey appears. Tap Details to view the residuals from the average position to each individual position. You can use this residuals form to include or exclude specific positions from the average computation.

Tap Options to select the averaging method. Two methods are supported:

- **Weighted**
- **Unweighted**

Tip - General Survey averages all positions in the current job database with the same name (except Control points). Tap Details to ensure that only the required positions are averaged.

To store the computed average position for the point, tap Store. If an averaged position for the point already exists in the database, the existing point is automatically deleted when the new average position is stored.

Note –

- An averaged position is not automatically updated if the positions used to compute the average are changed. For example, if the calibration is updated, if observations are transformed or deleted, or if new observations of the same name are added, re-compute the averaged position.
- Averaging uses Least squares to average points/observations in the current job that have the same name.
 - If the average includes anything other than ECEF or WGS84 positions, the average is stored as a grid.
 - GNSS observations and conventional observations that include a measured slope distance are resolved to grid and then averaged using Least squares. The intersections of angles only conventional observations are averaged using Least squares.
 - Conventional angle-only observations are only added to the solution if there are no other positions or observations.
 - When the average includes only ECEF or WGS84 positions, the averaged grid position is converted back to WGS84 and stored as a WGS84. When the average contains only grid positions and conventional observations, or a mixture of position types, then the averaged grid position is stored as a grid.
 - Any Mean Turned Angle (MTA) observed to the point is ignored and the original observations are used to compute the average position.
- If Weighted is selected, points in an average are weighted as follows:
 - GNSS positions use the horizontal and vertical precisions of the observations. Observations that do not have precisions, and keyed-in points, use 10 mm for horizontal and 20 mm for vertical.
• For conventional observations that include a measured slope distance, horizontal and vertical standard errors are computed based on the standard errors of the components of the observation.

The standard error used for weighting the horizontal position is a combination of those used for the horizontal direction and horizontal distance weights from the resection calculation. For more information, see [Resection Computations] at www.trimble.com/Survey/Trimble-Access-IS.aspx.

• To automatically average duplicate points, enable Auto average in the Duplicate point tolerance section of the survey style.

Arc solutions

Use arc solutions to:
• Calculate arc solutions when two parts of the arc are known, and to view the results as both text and graphics.
• Compute points on the arc.
• Add the arc, and the points defining the arc, to the database.

Calculate arc solutions

Use the two Method fields to set the entry type for the arc values you have.
The first known part of the arc is defined by one of the following:
• Radius - is the radius of the arc.
• Delta - is the delta or deflection angle.
• Degree arc - is the deflection angle (delta) that results in an arc length of 100 units.
• Degree chord - is the deflection angle (delta) that results in a chord length of 100 units.

The second known part of the arc is defined by one of the following:
• Delta - is the delta or deflection angle.
• Length - is the arc length.
• Chord - is the chord length.
• Tangent - is the distance from the PC or PT to the PI.
• External - is the shortest distance between the Point of Intersection (PI) and the arc.
• Mid ordinate - is the distance between the arc and the chord at the mid point of the arc.

Results

Tap Calc to view the results for the horizontal arc, and a graphical view of the arc.
Entered data appears as black text; computed data appears as red text.
See the following figure for details on the values that are computed for an arc.

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Segment area</td>
<td>The area between the arc and the chord.</td>
</tr>
<tr>
<td>2</td>
<td>Sector area</td>
<td>The area between the arc and the two edge radii.</td>
</tr>
<tr>
<td>3</td>
<td>Fillet area</td>
<td>The area between the arc and the tangents.</td>
</tr>
<tr>
<td>4</td>
<td>Center point of the arc</td>
<td>The center point of the arc.</td>
</tr>
<tr>
<td>5</td>
<td>Point of curvature (PC)</td>
<td>The start of the arc.</td>
</tr>
<tr>
<td>6</td>
<td>Point of Intersection (PI)</td>
<td>The point at which the tangents intersect.</td>
</tr>
<tr>
<td>7</td>
<td>Point of tangency (PT)</td>
<td>The end of the arc.</td>
</tr>
<tr>
<td>8</td>
<td>Radius</td>
<td>The radius of the arc.</td>
</tr>
<tr>
<td>9</td>
<td>Tangent</td>
<td>The distance from the PC or PT to the PI.</td>
</tr>
<tr>
<td>10</td>
<td>Delta angle</td>
<td>The delta angle.</td>
</tr>
<tr>
<td>11</td>
<td>Deflection angle</td>
<td>The deflection angle.</td>
</tr>
<tr>
<td>12</td>
<td>Degree arc</td>
<td>The deflection angle that results in an arc length of 100 units.</td>
</tr>
<tr>
<td>13</td>
<td>Degree chord</td>
<td>The deflection angle that results in a chord length of 100 units.</td>
</tr>
<tr>
<td>14</td>
<td>Chord length</td>
<td>The chord length.</td>
</tr>
<tr>
<td>15</td>
<td>Mid ordinate</td>
<td>The distance between the arc and the chord at the mid point of the arc.</td>
</tr>
<tr>
<td>Item</td>
<td>Value</td>
<td>Definition</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>16</td>
<td>External</td>
<td>The minimum distance between the PI and the arc.</td>
</tr>
<tr>
<td>17</td>
<td>Arc length</td>
<td>The arc length.</td>
</tr>
</tbody>
</table>

Compute points on the arc

Tap **Layout** to compute points on the arc at any station along the arc.

You can select from the following methods:

- PC deflection
- PI deflection
- Tangent offset
- Chord offset

When viewing any of the arc or layout computation results, tap **Store** to save the results in the current job.

To remove the Layout fields from the screen, tap **Arc**.

PC deflection

Provides the deflection angle and distance to each specified station on the arc as if you are occupying the PC point and backsighting the PI point.

Tap **Calc** to view the computed arc with these additional details:

- **Station** - is the specified station along the arc.
- **Deflection** - is the deflection angle from the tangent line (PC point to PI point) to the current station point on the arc.
- **Chord** - is the distance to the current station point on the arc from the PC point.
- **Previous station** - is the previously specified PC deflection station.

 This is available only if the immediately previous point was computed using the PC deflection method.
- **Short chord** - is the chord distance from the current PC deflection point on the arc to the previous PC deflection point on the arc.

 This is available only if the immediately previous point was computed using the PC deflection method.
method.

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Point of curvature (PC)</td>
</tr>
<tr>
<td>2</td>
<td>Point of Intersection (PI)</td>
</tr>
<tr>
<td>3</td>
<td>Point of tangency (PT)</td>
</tr>
<tr>
<td>4</td>
<td>Center point of the arc</td>
</tr>
<tr>
<td>5</td>
<td>Current station</td>
</tr>
<tr>
<td>6</td>
<td>Chord</td>
</tr>
<tr>
<td>7</td>
<td>Deflection angle</td>
</tr>
</tbody>
</table>

PI deflection

Provides the deflection angle and distance to each specified station on the arc as if you are occupying the PI point and backsighting the PC point.

Tap *Calc* to view the computed arc with these additional details:

- **Station** - is the specified station along the arc.
- **Deflection** - the deflection angle from the incoming tangent line to the current station point on the arc.
- PI to station - the distance to the current station point on the arc from the PI point.

![Diagram showing points 1 to 7 with labels: Point of curvature (PC), Point of Intersection (PI), Point of tangency (PT), Center point of the arc, Current station, Deflection angle, PI to station.]

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Point of curvature (PC)</td>
<td>4</td>
<td>Center point of the arc</td>
</tr>
<tr>
<td>2</td>
<td>Point of Intersection (PI)</td>
<td>5</td>
<td>Current station</td>
</tr>
<tr>
<td>3</td>
<td>Point of tangency (PT)</td>
<td>6</td>
<td>PI to station</td>
</tr>
</tbody>
</table>

Tangent offset

Provides the perpendicular offset information from the tangent line (the line from the PC point to the PI point) to each specified station on the arc.

Tap **Calc** to view the computed arc with these additional details:

- **Station** - is the specified station along the arc.
- **Tangent dist (TD)** - is the distance along the tangent line from the PC point toward the PI point where the perpendicular offset to the arc point occurs.
- **Tangent offset** - is the perpendicular offset distance from the tangent line to the current station point on the arc.
- **Tangent** - is the length of the tangent line (the distance from the PC point to the PI point).
- **Tangent - TD** - is the remainder distance along the tangent line (the distance from the point of
the perpendicular offset to the PI point)

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Point of curvature (PC)</td>
</tr>
<tr>
<td>2</td>
<td>Point of Intersection (PI)</td>
</tr>
<tr>
<td>3</td>
<td>Point of tangency (PT)</td>
</tr>
<tr>
<td>4</td>
<td>Center point of the arc</td>
</tr>
<tr>
<td>5</td>
<td>Current station</td>
</tr>
<tr>
<td>6</td>
<td>Tan offset</td>
</tr>
<tr>
<td>7</td>
<td>Tan distance (TD)</td>
</tr>
<tr>
<td>8</td>
<td>Tangent - TD</td>
</tr>
<tr>
<td>9</td>
<td>Tangent</td>
</tr>
</tbody>
</table>

Chord offset

Provides the perpendicular offset information from the long chord (the line from the PC point to the PT point) to each specified station on the arc. The PC deflection information is also provided.

Tap *Calc* to view the computed arc with these additional details:

- **Station** - is the specified station along the arc.
- **Chord dist** - is the distance along the long chord from the PC point (toward the PT point) where the perpendicular offset to the arc point occurs.
- **Chord offset** - is the perpendicular offset distance from the long chord to the current station point on the arc.
- **PC deflection** - is the deflection angle from the tangent line (PC point to PI point) to the current station point on the arc.
• Chord length - is the distance to the current station point on the arc from the PC point.

<table>
<thead>
<tr>
<th>Point of curvature (PC)</th>
<th>Center point of the arc</th>
<th>Chord offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point of Intersection (PI)</td>
<td>Current station</td>
<td>Chord length</td>
</tr>
<tr>
<td>Point of tangency (PT)</td>
<td>Chord distance</td>
<td>PC deflection</td>
</tr>
</tbody>
</table>

Add the arc and the points defining the arc

Tap *Add* to add to the database the:
- calculated arc
- point defining the end point of the arc
- point defining the center point of the arc

Note – Before you can add these to the database, you must select a start point for the arc, a back tangent, and the back tangent direction.

Triangle solutions

You can use keyed-in data to calculate a triangle by various methods. You can then view the results as both text and graphics, and store the results in the database.

Calculate a triangle using one of the following methods:

Side-Side-Side
Define a triangle by entering the distances for sides a, b, and c. Tap *Calc* to view the results.

Angle-Side-Angle
Define a triangle by entering angle A, the distance for side b, and angle C. Tap *Calc* to view the results.

Side-Angle-Angle
Define a triangle by entering the distance for side a, angle B, and angle A. Tap *Calc* to view the results.
Side-Angle-Side
Define a triangle by entering the distance for side a, angle B, and the distance for side c. Tap Calc to view the results.

Side-Side-Angle
Define a triangle by entering the distances for sides a and b, and angle A. Tap Calc to view the results.

Results
Tap Calc to view the results including the lengths of sides a, b, and c, the angles of A, B, and C, the area of the triangle, and a graphical view of the triangle.

Entered data appears as black text; computed data appears as red text.

In some situations, there may be two solutions to a triangle. When this occurs, an Other softkey is available in the result screen. Tap Other to toggle between the two possible solutions so that you can select the correct one. Tap Store to record the triangle results in the current job.

Subdivide a line

Use this function to subdivide a line into segments. The points created are automatically stored in the database and the point names are automatically incremented from the Start point name.

You can predefine the code of a subdivided point. For more information, see Subdivide pts code.

Subdivide a line using one of the following methods:
- Fixed segment length
- Fixed number of segments

Tip - If the line does not already exist, tap the advanced pop-up arrow and then select Two points.
You can then enter the start point and end point to define the line.
Fixed segment length

To subdivide a line into segments of fixed length:

1. Do one of the following:
 - From the map, select the line to be subdivided (1). Tap and hold on the screen and then select the *Subdivide a line* option from the shortcut menu.
 - From the main menu, select *Cogo / Subdivide a line*. Enter the name of the defined line.
2. In the *Method* field, select Fixed segment length.
3. Enter the segment length (2), and any horizontal offset (3) and vertical offset from the line.
4. Enter the names of the *Start at station* (4), the *End at station* (5), and the *Start point name*.
5. Tap *Start* to calculate the new points (4, 6, 7, or 8, 9, 10).

Fixed number of segments

To subdivide a line into a fixed number of segments:

1. Do one of the following:
 - From the map, select the line to be subdivided. Tap and hold on the screen and then select the *Subdivide a line* option from the shortcut menu.
 - From the main menu, select *Cogo / Subdivide a line*. Enter the name of the defined line.
2. In the *Method* field, select Fixed number of segments.
3. Enter the number of segments, and any horizontal offset (2) and vertical offset from the line.
4. Enter the names of the *Start at station* (3), the *End at station* (4), and the *Start point name*.
5. Tap *Start* to calculate the new points (3, 5, 4, or 6, 7, 8).
Subdivide an arc

Use this function to subdivide an arc using one of the following methods:

- Fixed segment length
- Fixed number of segments
- Fixed chord length
- Fixed angle subtended

The points created are automatically stored in the database and the point names are incremented from the Start point name.

You can predefine the code of a subdivided point. For more information, see Subdivide pts code.

Fixed segment length

To subdivide an arc into segments of fixed length:

1. Do one of the following:
 - From the map, select the arc to be subdivided. Tap and hold on the screen and select the Subdivide an arc option from the shortcut menu.
 - From the main menu, select Cogo / Subdivide an arc. Enter the name of the defined arc.
2. In the Method field, select Fixed number of segments.
3. Enter the segment length (2), and any horizontal offset (3) and vertical offset from the arc.
4. Enter the names of the Start at station (4), the End at station (5), and the Start point name.
5. Tap Start to calculate the new points (4, 6, 7, or 8, 9, 10).

![Diagram of subdivided arc]

Fixed number of segments

To subdivide an arc into a fixed number of segments:

1. Do one of the following:
 - From the map, select the arc to be subdivided. Tap and hold on the screen and select the Subdivide an arc option from the shortcut menu.
 - From the main menu, select Cogo / Subdivide an arc. Enter the name of the defined arc.
2. In the Method field, select Fixed number of segments.
3. Enter the number of segments, and any horizontal offset (2) and vertical offset from the arc.
4. Enter the names of the *Start at station* (3), the *End at station* (4), and the *Start point name*.
5. Tap *Start* to calculate the new points (3, 5, 4, or 6, 7, 8).

Fixed chord length

To subdivide an arc into segments of fixed chord length:

1. Do one of the following:
 - From the map, select the arc to be subdivided. Tap and hold on the screen and select the *Subdivide an arc* option from the shortcut menu.
 - From the main menu, select *Cogo / Subdivide an arc*. Enter the name of the defined arc.
2. In the *Method* field, select Fixed chord length.
3. Enter the chord length (2), and any horizontal offset (3) and vertical offset from the arc.
4. Enter the names of the *Start at station* (4), the *End at station* (5), and the *Start point name*.
5. Tap *Start* to calculate the new points (4, 6, 7, or 8, 9, 10).

Fixed angle subtended

To subdivide an arc into fixed angle subtended segments:

1. Do one of the following:
 - From the map, select the arc to be subdivided. Tap and hold on the screen and select the *Subdivide an arc* option from the shortcut menu.
 - From the main menu, select *Cogo / Subdivide an arc*. Enter the name of the defined arc.
2. In the *Method* field, select Fixed angle subtended.
3. Enter the *Angle subtended* (2), and any horizontal offset (3) and vertical offset from the arc.
4. Enter the names of the *Start at station* (4), the *End at station* (5), and the *Start point name*.
5. Tap Start to calculate the new points (4, 6, 7, or 8, 9, 10).

![Diagram of points]

Transformations

Use this Cogo function to do one of the following:

- Transform a single point, or a selection of points, using one or a combination of rotation, scale, or translations.
- Create or edit a local transformation that can be applied to Grid (local) points to transform the Grid (local) points to Grid points.

**Note** – Local transformation support is available only when the Advanced Geodetic option is enabled.

Transformations can be applied and used in a number of places throughout the General Survey software:

- Key in points
- Linked files
- Stakeout points from a linked CSV or TXT file
- Review job
- Point manager
- Import fixed format files from a comma delimited file
- Export Grid (local)

Tips

- Use Cogo / Transformations / Manage/Define local transformations to create or edit transformations. See Local transformations.
- Use Point manager to select a different input transformation.
- Use Jobs / Copy between jobs to copy transformations to other jobs.

Rotate, scale, and translate points

Rotate, scale, and translate changes the stored coordinates of the points that are transformed. This method saves new transformed points and then deletes the original points.

When performing more than one transformation, the order is always rotate, scale, then translate.
Note –
- Only points that can be displayed as grid coordinates can be transformed.
- When transforming by both rotate and scale, the origin for the scale defaults to the origin for the rotate. You can change this.
- Points selected in the map automatically populate the list of points to be transformed.
- When entering a point name, you can select from the list, key in a point, perform a fast fix, measure a point, or make a map selection. Fast fix stores an automatic rapid point with a temporary point name.

WARNING - If you select a base point to be transformed, then vectors flowing from this base become null.

Rotate
To rotate a selection of points about a specified origin point:
1. From the main menu, select Cogo / Transformations.
2. Select Rotate / scale / translate points and then tap Next.
3. Set the Rotate check box, then tap Next.
4. Enter an Origin point.
5. Enter a Rotation or, to compute the rotation as the difference between two azimuths, select Two azimuths from the pop-up menu.
6. Tap Next and then select the point(s) to rotate.
7. To store the transformed point(s) to the database, tap Accept.

A transformation deletes the original point(s) and stores new grid points of the same name.

Scale
To scale the distances between the origin point and the selected points:
1. From the main menu, select Cogo / Transformations.
2. Select Rotate / scale / translate points and then tap Next.
3. Set the Scale check box, then tap Next.
4. Enter an Origin point.
5. Enter a Scale factor.
6. Tap Next, then select the point(s) to scale.
7. To store the transformed point(s) to the database, tap Accept.

A transformation deletes the original point(s) and stores new grid points of the same name.

Translate
To move a selection of points on a grid surface:
1. From the main menu, select Cogo / Transformations.
2. Select Rotate / scale / translate points and then tap Next.
3. Set the Translate check box, then tap Next.
4. In the *Method* field, select either Deltas or Two points.
 - If you choose Deltas:
 1. Enter a delta Northing, Easting, and/or Elevation. You can select a single delta, for example a Northing, or any combination of deltas for the transformation.
 - If you choose Two points:
 a. Select a *From point*.
 b. Select a *To point*.
5. Tap Next, then select the point(s) to transform.
6. To store the transformed point(s) to the database, tap *Accept*.
 A transformation deletes the original point(s) and stores new grid points of the same name.

Local transformations

There are often occasions in surveying where existing points to be tied into or staked out have grid coordinates defined in one or more coordinate or reference systems, which are different from the current job's coordinate system. These other coordinate or reference systems may be defined based on old base lines where the coordinates are effectively station and offset values from the base (reference) line. Or they may be referenced to a completely arbitrary reference system. For example, an architect may provide coordinates for a building foundation that needs to be positioned and transferred into a real coordinate system on site.

General Survey lets you compute and store one or more local transformations that will transform on-the-fly between the grid coordinates and sets of local grid coordinates.

Unlike Rotate, Scale, and Translate, the position of transformed points is not changed. Instead, points can be created as Grid (local), and a relationship to Grid is defined that provides the transformation to the local coordinate system.

Note – Grid (local) points cannot be displayed in the map if a transformation to grid has not been defined.

There are three types of local grid transformations that can be created and used throughout General Survey:

- Line transformations
- Helmert transformations
- Seven parameter transformations

Note – Local transformation support is available only when the Advanced Geodetic option is enabled.

A point stored as a Grid (local) can only ever have one 'input' transformation that defines the relationship to database Grid positions. However, when viewing with Review job or Point manager, and when exporting as Grid (local), you can select a different local transformation, which changes the displayed computed Grid (local) coordinates.

This powerful function enables you to, for example, key in a Grid (local) point referenced to one baseline or reference system, and transform to the database grid, and then, if required, use another 'display' transformation to display the point with computed Grid (local) values referenced to a different baseline or reference system. This is analogous to how any point can be displayed as station and offset to any line, arc, alignment, or road.
Line transformations

The *Line* transformation type is a 2D transformation that allows you to select or key in two database grid points and match them up with the local grid coordinates for the same positions.

To create a line transformation:

1. From the main menu, tap **Cogo / Transformations / Manage & define transformations** and then tap **Next**.
2. Select **Create new transformation**, and then tap **Next**.
3. Set the **Transformation type** to *Line* and then enter the **Transformation name**.
4. In the **Start point** field, enter the name of the point and then enter the corresponding Grid (local) coordinates in the **North (local)** and **East (local)** fields.
5. In the **End point** field, enter the name of the point and then enter the corresponding Grid (local) coordinates in the **North (local)** and **East (local)** fields.
6. Tap **Calc**, check the computed transformation distances and then select a **Scale factor type** to fit the local grid positions to the database grid positions:
 - Free - The computed scale factor is applied to the Grid (local) values in both local axes.
 - Fixed to 1.0 - No scaling is applied. (The Grid (local) values are used in the transformation with no scaling applied to them.)
 - The start point is the origin point of the transformation.
 - Along the local northing axis only - The computed scale factor is applied to the Grid (local) northing values only during the transformation.
7. Tap **Store** to store the transformation to the current job.

The line transformation appears in the map as a black dashed line between the start grid point and the end grid point.

Use **Filter** to enable and disable the display of line transformations.

Note – ‘Grid points’ do not have to be stored as grid points, but General Survey must be able to compute grid coordinates for the point.

Helmert transformations

The *Helmert* transformation type can be a 2D or 3D transformation that allows you to select up to 20 identical point pairs to compute a best fit transformation between the database grid points and the local grid coordinates for the same positions. For more information on Helmert transformations, refer to the Trimble Access Software Resection Computations PDF.

To create a Helmert transformation:

1. From the main menu, tap **Cogo / Transformations / Manage & define transformations** and then tap **Next**.
2. Select **Create new transformation** and then tap **Next**.
3. Set the **Transformation type** to **Helmert** and then enter the **Transformation name**.
4. Set the **Scale factor type** to one of the following:
Free - The computed best fit scale factor is used in the transformation.

Fixed, and then enter the Scale factor - Specify your own scale factor to be used in the transformation.

5. Set the Vertical adjustment to one of the following and then tap Next:

- None - No vertical adjustment is carried out.
- Constant adjustment only - The average vertical correction computed from the elevations of the point pairs is used for vertical adjustment in the transformation.
- Inclined plane - A vertical correction plus a best fit correction plane is used for vertical adjustment in the transformation.

6. Tap Add to select the Grid point name and Local grid point name pairs of points and then set the Use field to one of the following:

- Off - Do not use this point pair in the computation of the transformation parameters.
- Vertical only - Use this point pair only in the computation of the vertical adjustment parameters.
- Horizontal only - Use this point pair only in the computation of the horizontal adjustment parameters.
- Horizontal & vertical - Use this point pair in the computation of both the horizontal and the vertical adjustment parameters.

7. Tap Accept to add the pair to the list and then tap Add again to add more pairs of points.

8. Tap Results to see the Helmert transformation results.

9. Tap Store to store the transformation to the current job.

Note –

- To edit a transformation, follow the steps to create a new transformation, but at step 2, select Select transformation to edit, select the required transformation from the list, tap Next, update the transformation parameters as required, check the results and then tap Store to overwrite the previous transformation.
- If you change a transformation, the position of all points using that transformation also changes.
- If you change the coordinates of a point used to define a Helmert transformation, General Survey does not automatically recompute the transformation.
- If you change the coordinates of a point, and then recompute the Helmert transformation the new transformation uses the new coordinates.

Seven parameter transformations

The Seven parameter transformation type is a 3D transformation that allows you to select up to 20 identical point pairs to compute a best fit transformation between the database grid points and the local grid coordinates for the same positions.

A seven parameter transformation will provide a better solution than a Helmert transformation if the two coordinate systems are not defined with respect to the same horizontal plane.
To create a seven parameter transformation:

1. From the main menu, tap Cogo / Transformations / Manage & define transformations and then tap Next.
2. Select Create new transformation and then tap Next.
3. Set the Transformation type to Seven parameter and then enter the Transformation name.
4. Tap Add to select the Grid point name and Local grid point name pairs of points and then set the Use field to one of the following:
 - Off - Do not use this point pair in the computation of the transformation parameters.
 - Horizontal & vertical - Use this point pair in the computation of the adjustment parameters.
5. Tap Accept to add the pair to the list and then tap Add again to add more pairs of points.
6. Residuals will only start to be displayed once 3 point pairs have been defined.
7. Tap Results to see the Seven parameter transformation results.
8. Tap Store to store the transformation to the current job.

Note –
- The Seven parameter transformation is a three dimensional transformation only. You cannot use 1D or 2D points in the point pairs used to compute the transformation parameters.
- If a Seven parameter transformation is applied to 1D or 2D Grid, or Grid (local) point, the transformed position will have null coordinates.
- To edit a transformation, follow the steps to create a new transformation, but at step 2, select Select transformation to edit, select the required transformation from the list, tap Next, update the transformation parameters as required, check the results and then tap Store to overwrite the previous transformation.
- If you change a transformation, the position of all points using that transformation also changes.
- If you change the coordinates of a point used to define a Seven parameter transformation, General Survey does not automatically recompute the transformation.
- If you change the coordinates of a point, and then recompute the Seven parameter transformation the new transformation uses the new coordinates.

Traverse

Use this function to calculate a traverse misclosure, and adjust a conventional traverse. The software helps you select the points to be used, calculates the misclosure, and then lets you compute either a Compass or Transit adjustment.

Note – The Compass adjustment is sometimes known as the Bowditch adjustment.

You can calculate closed-loop traverses and closed traverses that start and end on pairs of known points.

To calculate a traverse:

1. Enter the Traverse name.
2. In the Start station field, tap List.
3. Select a point from the list of valid traverse points that can be used as the start station. Tap **Enter**.

 A valid start station has one or more backsights and one or more observations to the next traverse station.

4. Tap **Add** to add the next point in the traverse.

5. Select the next station in the traverse.

 A valid traverse station has one or more backsights observations to the previous traverse station, and one or more observations to the next traverse station. When there is only one valid traverse station, it is added automatically.

 Note – **To view the observed azimuth and distance between two points in the list, highlight the first point and tap the Info softkey.**

6. Repeat steps 4 and 5 until all points in the traverse have been added.

 A valid end station has one or more backsights, and one or more observations to the previous traverse station.

 If you need to remove any points from the list, highlight the point and tap **Remove**. When you remove a point, all points after it are removed as well.

7. Tap **Close** to compute the traverse misclosure.

 Note –

 - **You cannot add more points after selecting a control point, or a station with more than one backsight.**
 - **To compute a traverse closure, there must be at least one distance measurement between successive points in the traverse list.**
 - **The Azimuth fields do not have to be completed.**

If the backsight azimuth is null:

- the traverse cannot be oriented.
- adjusted coordinates cannot be stored.
- an angular adjustment cannot be computed on an open traverse. (A distance adjustment can be computed.)

 If the foresight azimuth is null in a loop traverse, and if all angles have been observed, you can compute an angular and distance adjustment.

The backsight and foresight points that provide the orientation for the traverse are shown.

If necessary, tap **Enter** to edit the fields as follows:

1. Inspect the results of the traverse and do one of the following:

 - To store the closure results, tap **Store**.
 - To adjust the traverse, go to the next step.

2. Tap **Options** to check the traverse settings. Make any changes as required, then tap **Enter**.

3. Tap **Adj. Ang.** to adjust the angular misclosure. The angular misclosure is distributed according to the setting in the **Options** screen.

4. Inspect the results of the traverse, then do one of the following:
To store the angular adjustment details, tap Store.

To adjust the distance misclosure, tap Adj. dist. The distance misclosure is distributed according to the setting in the Options screen and the traverse is stored.

When the traverse is stored, each point used in the traverse is stored as an adjusted traverse point with a search classification of adjusted. If there are any previously adjusted traverse points of the same name, they are deleted.

Taped distances

Use this function to add points to your General Survey job. Use a graphical right angle and distance interface to define rectangular structures, such as a building or building foundations. Key in or measure two points to define the first side, orientation, and location of the object.

Tip - To select the elevation from the Start point or End point, use the pop-up menu in the Elevation field.

To select the direction for your next point graphically on the plan view, tap the screen or use the right and left arrow keys. The dashed red line shows the current direction for the next side. To create the next side, tap Add, and then enter the distance to the next point using the angle defined in the plan view. Alternatively, select a point that already exists in your job and the software will calculate the distance to that point for you.

To measure a point using GNSS or Conventional, select Fastfix or Measure from the pop-up menu on the Point name field.

To measure distances using a laser rangefinder, you must first connect the laser rangefinder to the controller and configure the laser rangefinder in your survey style. For more information, see Configuring a survey style to use a laser rangefinder. If the Auto measure field in the survey style Laser rangefinder option is set to Yes, the General Survey software instructs the laser to take a measurement when you tap Laser. To insert a distance into a Length or H. Dist field, tap Laser from the pop-up menu and measure the distance with the laser. See also Measuring points with a laser rangefinder.

To close the object back onto the start point, tap Close. A horizontal distance will be computed and displayed. Use this as a check against your plan or your taped distance. To complete the function, tap Store. To add further sides to the object, tap Add.

Tip - If you need more detailed information on the quality of the close, use a different point name for the end point, and store the object. Then compute an inverse between the start point and the end point.

To change a keyed in distance before the feature is stored, tap Edit, and then select the end point of the side to edit. When you adjust the distance, the plan view updates. You can then continue to add more sides.

Note –

- Once the feature has been stored, you can no longer edit the lengths of the sides.
- The orientation is defined by the first side. Only parallel or 90° angles can be added from this side. To use a different angle, store the object, and then create a new side.
- Because new points are stored as polars, taped distances will not work without a Scale factor only or fully defined Projection in the coordinate system.
In addition to the new points that are created, lines are created automatically and stored to the General Survey database. These are visible in the map and can be used to stake out lines.

Calculator

To use the calculator at any time, select Cogo / Calculator from the main General Survey menu. Tap (Options) to set the angle method, calculator mode (Reverse Polish Notation (RPN) or Standard), and decimal place display. Tap Azimuth to compute an azimuth. Tap Distance to compute a distance. The calculator functions are shown below.

<table>
<thead>
<tr>
<th>Calculator symbol</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Add</td>
</tr>
<tr>
<td>−</td>
<td>Subtract</td>
</tr>
<tr>
<td>×</td>
<td>Multiply</td>
</tr>
<tr>
<td>÷</td>
<td>Divide</td>
</tr>
<tr>
<td>^</td>
<td>Change sign of number being entered</td>
</tr>
<tr>
<td>=</td>
<td>Equals</td>
</tr>
<tr>
<td>π</td>
<td>Pi</td>
</tr>
<tr>
<td>←</td>
<td>Enter</td>
</tr>
<tr>
<td>▼</td>
<td>Show all values on the stack</td>
</tr>
<tr>
<td>◼</td>
<td>Back space</td>
</tr>
<tr>
<td>□</td>
<td>Options</td>
</tr>
<tr>
<td>√x</td>
<td>Raise Y to the power of X</td>
</tr>
<tr>
<td>x^2</td>
<td>Square</td>
</tr>
<tr>
<td>√</td>
<td>Square root</td>
</tr>
<tr>
<td>^x</td>
<td>Raise root</td>
</tr>
<tr>
<td>10^x</td>
<td>Enter 10 to the power of X</td>
</tr>
<tr>
<td>±</td>
<td>Enter exponent or change exponent sign</td>
</tr>
<tr>
<td>▼x</td>
<td>Reciprocal</td>
</tr>
<tr>
<td>x⁺y</td>
<td>Swap X with Y</td>
</tr>
</tbody>
</table>
Calculator symbol | Function
---|---
SIN | Sine
SIN⁻¹ | Arc Sin
COS | Cosine
COS⁻¹ | Arc Cosine
TAN | Tangent
TAN⁻¹ | Arc Tangent
LOG | Log base 10
SHIFT | Switch SHIFT state
{ | Open parenthesis
} | Close parenthesis
C | Clear all
CE | Clear entry
Mem | Memory functions
P>R | Polar to rectangular coordinate conversion
R>P | Rectangular to polar coordinate conversion
R↓ | Rotate stack down
R↑ | Rotate stack up
D M S | Insert degrees, minutes, or seconds separator
DMS⁻¹ | Subtract angles of the form DD.MMSSsss
DMS⁻¹ | Add angles of the form DD.MMSSsss
DD.MM | Convert from DD°MM'SS.sss or DD.MMSSsss to angle units
DD.MM | Convert from current angle units to DD°MM'SS.sss

Tip - You can access the calculator from the pop-up arrow on most distance fields. When accessing the calculator with the pop-up arrow, if the numeric field already contained a number that number is automatically pasted into the calculator. At the end of the calculator operations the last solution is pasted back into the numeric field when Accept is selected.

1. Select Calculator from the pop-up menu.
2. Enter the numbers and functions.
3. Tap = to calculate the result.
4. Tap Accept to return the result to the field.

Pop-up menu controls

To insert a feature name into a field, enter the name or tap the pop-up menu button and select one of the following options from the list that appears:

<table>
<thead>
<tr>
<th>Select...</th>
<th>To...</th>
</tr>
</thead>
<tbody>
<tr>
<td>List</td>
<td>select features from the database</td>
</tr>
<tr>
<td>Key in</td>
<td>key in details</td>
</tr>
<tr>
<td>Measure</td>
<td>measure a point</td>
</tr>
<tr>
<td>Fast fix</td>
<td>automatically measure a construction class point</td>
</tr>
<tr>
<td>Map selections</td>
<td>select from a list of the features currently selected in the map</td>
</tr>
<tr>
<td>Calculator</td>
<td>shortcut to the Calculator</td>
</tr>
<tr>
<td>Units</td>
<td>select units for the field</td>
</tr>
</tbody>
</table>

To change the method of data entry, tap the advanced pop-up menu button. The first two or three fields change.
Survey – General

Measuring and staking out

Use the Measure and Stakeout menus to measure and stake out points using the survey styles defined in the General Survey software.

All surveys in General Survey are controlled by a survey style. Survey styles define the parameters for configuring and communicating with your instruments, and for measuring and storing points. This whole set of information is stored as a template and used each time you start a survey.

If the defaults do not suit your needs, modify the style. To do this, tap Settings from the Trimble Access menu and then tap Survey styles.

To measure or stake out, the General Survey software needs to start a survey, at which time you are prompted to select the appropriate survey style. If there is only one survey style, it is automatically selected when you start a survey. Otherwise, select a style from the list that appears.

For more information, see:
- Measuring points in a conventional survey
- Measuring points in a GNSS survey
- Stakeout – Overview

Survey types

The survey type you use will depend on available equipment, field conditions, and the results required. Configure the survey type when you create or edit a survey style.

In a conventional survey, the controller is connected to a conventional survey instrument such as a total station. For more information, see Conventional surveys: Getting started.

In a GNSS survey, the controller is connected to a GNSS receiver. For more information, see GNSS surveys: Getting started.

In an integrated survey, the controller is connected to both a conventional survey instrument and a GNSS receiver at the same time. The General Survey software can quickly switch between the two instruments, within the same job. For more information, see Integrated surveys.
Getting connected

By default, the General Survey software automatically connects to the connected instrument or GNSS receiver.

For more information see:
- Automatically connecting to a conventional instrument
- Automatically connecting to a GNSS receiver

Measure codes

To measure and code conventional or GNSS observations in one step, select the feature code you want to measure and store from a coding form containing a number of configurable buttons. You can define multiple groups or pages of codes, each consisting of up to 25 codes.

In the Measure codes form, if you activate the Code button, it affects the behavior of the configurable code buttons. When you then tap one of the configurable code buttons, the code on that button is added to the code field at the bottom of the Measure codes form. Typically, you can use the Code button to combine codes from multiple code buttons where features combine, either from the current group, or a combination of groups. You can also use it to enter a new code.

If a code has attributes, the attribute values appear at the bottom of the Measure codes form. You cannot directly edit these attribute values in the form. To change the attribute values, do one of the following:

- Tap Attrb in the Measure codes form.
- Tap Attrb in the Measure topo/Measure points form.

For more information, see Using feature codes with predefined attributes.

Adding a feature code group and assigning codes to the buttons

1. Select Measure / Measure codes and then tap Add group.
2. Enter a Group name and then tap OK.
3. To configure the number of code buttons that appear in each group, tap Options and then select the appropriate setting in the Code button layout field.

Note –

- To be able to activate the code button using the numeric keys on the controller keyboard, you must select 3x3 in the Code button layout field.
- The list of codes for each group is independent. For example, if you create codes for buttons using a 3x3 layout and then change the layout to 3x4, then three additional empty buttons are added to the group. The software does not move the first three buttons from the subsequent group into the current group.
- The codes defined for a group are remembered, even if they are not displayed. For example, if you create codes for buttons using a 3x4 layout and then change the layout
to 3x3, only the first nine codes are displayed. If you change the layout back to 3x4, all twelve codes are displayed.

4. To add a code to a button:
 a. Do one of the following:
 • Tap and hold on the button. When the tooltip message appears, remove the stylus from the screen.
 • Navigate to the button using the arrow keys, and then press the Space key, which emulates the 'tap and hold' action.
 b. In the dialog that appears, enter the code, or select a code from the feature code library. If the list of codes in the feature code library is long, you can filter the list of codes.
 c. To add another code to the same button, enter a space in the text field next to the first code, and then enter or select the second code.
 d. When you have finished adding codes to the button, tap Enter. The code you entered now appears on the button.
 If required, you can also enter additional descriptions.

5. To add more groups of feature code buttons, tap Add group.
 To navigate to a particular group, select it from the drop down list in the top left of the form. Alternatively, use A–Z to quickly switch to group pages 1–26. This method is not available if the Code button is enabled.
 New groups are added after the current group. To add a group to the end of existing groups, ensure you select the last group before selecting Add group.

Selecting a code from the feature library

To select the code to use, you can enter the initial characters of the code you want into the code field, and the list of codes available in the FXL are filtered based on the characters you have entered.
Tap C to search by Code or tap D to search by Description. Depending on your selection, the software shows items in the feature code library that have codes or descriptions starting with the text you entered. Tap an item in the list to select it.
If you are searching by Code, text you enter in the code field will auto complete to match existing codes in the list. Text does not auto complete when you are searching by Description.

Note – Because you can define multiple codes for one button by separating the codes with a space, if you enter a space in the text box, the software assumes that the text before the space applies to one code/description and the text after the space applies to a new code/description.
To search based on a series of characters that appear anywhere within the code or description, tap Match. All items in the FXL that contain the exact string entered are listed.

Note – You must enter the exact string to find. You cannot enter an asterisk (*) as a wildcard character when using the Match function.

Filtering the code list

To filter the entire feature code list by either code Type, for example point or control code, or by the Category as defined in the feature library, tap . The Set code list filters screen appears. Tap a feature type or a feature category to show/hide it. Tap Accept to return to the code list.
Note – Filter of Points, Lines, and Polygons is based on what is supported in FXL file version, not the contents of the actual FXL.

Measuring and coding observations

1. Select **Measure** / **Measure codes**.
2. To initiate a measurement, activate the appropriate Code button using one of the following methods:
 - Tap the button.
 - Press the numeric key on the controller keyboard corresponding to the button. When the buttons are set to a 3x3 layout, keys 7, 8, 9, activate the top row of buttons, keys 4, 5, 6 activate the middle row of buttons, keys 1, 2, 3 activate the bottom row of buttons.
 - Use the arrows keys on the controller to navigate to the button and then press **Enter**.
 - If the code has attributes, the attribute values appear at the bottom of the **Measure codes** form.
3. To automatically start the measurement when the button is selected, tap **Options** and then select the **Auto measure** check box.
 - **Note** – When the method is set to **Distance offset**, **Angles only**, and **H Angle only**, **Automeasure is temporarily paused**.
4. To configure the position of the highlight for the next code, tap **Options** and then configure the **Direction** of the **Template pickup**.
5. The code field is set to the code on the button and the measurement is initiated. The measurement is automatically stored depending on the setting in **Options**:
 - In a GNSS survey, set the Topo point options to **Auto store point**.
 - In a Conventional survey, clear the **View before storage** check box in the **Measure point options** form.
 - If descriptions were defined on the Measure codes button, the descriptions are also set to the descriptions on the button.
6. Once you store the measurement, the **Measure codes** form appears, ready for the next measurement.
 - Tap **[Enter]** to measure a point with the same code again, or use one of the methods described in step 2 above to measure with a different code.
 - The **Measure topo**/**Measure points** form, where the measurement was initiated, remains open in the background. If you need to change the point name or measurement method, tap **Switch** to to switch to this form, change the fields as required and then tap **Switch** to again to return to the **Measure codes** form.

Note –

- **The first time that you use Measure codes, the measurement may not begin automatically if you have not defined the point name and target height. If this occurs, complete these fields and then tap Measure to begin the measurement.**
- **To store a note with an observation**, tap **[]**.
- **To change target or antenna heights**, tap the target icon in the status bar.
- During a measurement, you can change the point name, and the target or antenna height and code. However, you can do this only if you start editing before the observation is stored. Alternatively, tap Esc as soon as the measurement begins, make the required changes, then tap Measure to restart the measurement.

- To change the EDM or measurement method, tap Esc during the measurement, make the required changes, then tap Measure to restart the measurement.

- To change the point name or measurement method before you start a measurement, tap Switch to switch to the Measure topo/Measure points form, change the fields as required and then tap Switch to again to return to the Measure codes form.

- When using a GNSS receiver with an in-built tilt sensor where the point type has been configured to use Tilt auto-measure, the point will not auto-measure until the pole is within the specified tilt tolerance.

- When using a GNSS receiver with an in-built tilt sensor, you can configure the survey style to prompt a warning when the pole is outside a specified Tilt tolerance.

- Tap Options to configure the quality control, precision, and tilt settings.

- To add a vertical offset to the measured point, tap Options, select Add vertical offset and then in the Measure points screen enter a value in the Vertical offset field. This option is available only for points measured in an RTK-only GNSS survey.

Creating a template of a measurement code sequence

Use the Template pickup feature to automatically move the highlight from the current button to the next button after storing a measurement. Template pickup is particularly useful when coding observations in a regular pattern, for example, a road cross section.

To configure template pickup:
1. Tap Options.
2. Configure the template pickup Direction. Refer to the following diagram:

 ![Template pickup diagram]

 For:
 - Left to right - The highlight moves from 7-9, then 4-6, then 1-3.
 - Right to left - The highlight moves from 3-1, then 6-4, then 9-7.
 - Zig zag - The highlight moves from 7-9, 4-6, 1-3 then 3-1, 6-4, 9-7, then 7-9 and so on.
If the Direction is set to Off, the highlight remains on the selected button after a measurement is taken.
To skip a code, tap a different button, or use the arrow keys to select an alternative code button.

3. Configure the Number of elements. The Number of elements configured should match the number of elements across the template, and the number of buttons configured in Measure codes.

Note –
- When the code button layout is 3x3 the numeric keypad on the controller can be used as a keyboard shortcut for the buttons in Measure codes.
- To measure a point with a null code, activate a blank code button. Alternatively, tap Code, ensure that the code field is empty and then tap Measure.
- To delete an entire group of codes, select the group and then tap Delete.

Creating a template when you have multiple groups of codes
You can have up to 75 elements in a template. When there are more elements in a template than buttons in a group:
- Two or more groups are 'grouped' together with the highlight automatically moving between groups during template pickup.
- You can only configure the template pickup from Options on the first group. The second and third groups indicate that the template pickup was defined by the previous group.
- The up and down arrow on the keyboard moves through the current group only, but the left and right arrow on the keyboard can be used to move from the first/last button in one group to a button in the next group.
- New groups are added after the current group. To add a group to the end of existing groups, ensure you select the last group before selecting Add group.

Stringing support
Measure codes has '+' and '-' softkeys that enable you to apply a suffix to the code on the button. This is useful when you use the stringing method for feature coding.
You can configure the suffix to 1, 01, 001, or 0001.
When the suffix is configured to 01, tap '+' to increase the code "Fence" to "Fence01". Tap '-' to decrease the code by 01.
Tap Find to find the next available string for the currently highlighted button.

Attributes and base codes
You can configure the General Survey software to provide attributes for the complete code, or from a portion of the code - the "base code". See Additional settings.
The following rules help to explain the base code:

1. When *Use attributes of base code* is disabled, the code displayed on a button is the base code.
 - Enter "Fence", string the code to become "Fence01", the attributes are derived from "Fence01".
2. When *Use attributes of base code* is enabled, the code entered on a button is the base code.
 - Enter "Fence", string the code to become "Fence01", the attributes are derived from "Fence".
3. If you edit or change the code on a button, the base code resets, using rule 1 or rule 2 above.
4. If you change the configuration of the *Use attributes of base code* setting, the base code resets, using rule 1 or rule 2 above.
5. When Measure codes passes the code to the Measure topo, or Measure points system, the base code from within Measure codes is retained.

Note –

- If you use attributes and numeric codes with a string suffix, you must use Measure codes to define the suffix and start the measurement. Measure codes understands where the code ends and the suffix starts. If you do not use Measure codes, the entire numeric code + suffix will be treated as the code, the suffix cannot be determined, and attributes for the base code will not be available.
- To configure Use attributes of base code, from within Measure codes, use the up arrow softkey to select Options, and then select the check box as required.
- If the *Use attributes of base code* check box is selected, it is applied throughout the General Survey software.
- If you edit the code on a button when *Use attributes of base code* is disabled, the entire code from the code button is displayed in the Edit field.
- If you edit the code on a button when *Use attributes of base code* is enabled, the base code is displayed in the Edit field. The code on the button is "Fence01" and the base code is "Fence". If you edit this code, the base code "Fence" is displayed.
- You can string alphanumeric codes when *Use attributes of base code* is disabled. The code displayed on the button is the base code.
- You cannot string numeric only codes when *Use attributes of base code* disabled.

Tip - If you use multiple codes with attributes, enter all the codes before you enter the attributes.

Sharing groups of codes between controllers

The groups, and the codes within each group, are stored in a Measure Codes Database file (*.mcd). If you use a feature library, the Measure Codes Database file (*.mcd) is tied to that feature library and has a matching name. If you use the same feature library on other controllers, you can copy the *.mcd file to use in the other controllers. To use the feature library *.mcd file, you must assign the feature library to the job.

If you do not use a feature library, a [Default.mcd] file is created. The [Default.mcd] file can also be copied to other controllers. When the General Survey software does not have a feature library assigned to a job, the [Default.mcd] file is used in Measure codes.
Conventional Survey – Setup

Conventional survey – Getting started

The process for completing measurements using a conventional instrument is described below. Click each link to view more information.

1. Configure your survey style if required
2. Automatically connecting to a conventional instrument
3. Prepare for a robotic survey
4. Perform a station setup
5. Begin the survey
6. Measure points
7. End the survey

Configuring conventional survey styles

All surveys in General Survey are controlled by a survey style. Survey styles define the parameters for configuring and communicating with your instruments, and for measuring and storing points. This whole set of information is stored as a template and used each time you start a survey.

General Survey automatically connects to Trimble instruments. Configure the style only if the defaults do not suit your needs.

To configure a survey style:

1. From the Trimble Access menu, tap Settings / Survey styles / <Style name>.
2. Select each of the options in turn, and set them to suit your equipment and survey preferences.
3. Once you configure all the settings, tap Store to save them, and then tap Esc to return to the main menu.

For more information, see:

- Conventional instrument configuration
- Topo point
- Stakeout options
- Laser rangefinder
Conventional Survey – Setup

Duplicate point tolerance
Traverse options

Conventional instrument configuration

Configure the conventional instrument type when you create or edit a survey style. Select Instrument, choose the instrument type, and then set the associated parameters.

Note – Not all fields described below may appear for the instrument you have connected.

Bluetooth wireless connection

To connect to the instrument using Bluetooth wireless technology, see Enabling Bluetooth on the device.

Baud rate and parity

Use the Baud rate field to configure the General Survey baud rate to match that of the conventional instrument.

Use the Parity field to configure the General Survey parity to match that of the conventional instrument.

When you change the instrument type, the baud rate and parity settings automatically change to the default settings for the selected instrument.

HA VA status rate

Use the HA VA status rate field to set how often the General Survey software updates the horizontal and vertical angle display in the status line with information from the conventional instrument.

Note – Some instruments beep when communicating with the General Survey software. You can turn off the beep in the instrument or set the HA VA status rate to Never.

Measurement mode

The Measurement mode field appears if the selected instrument type has more than one measurement mode that can be set by General Survey. Use this mode to specify how the EDM measures distances. Options vary according to the instrument type. Select the Instr. default option to always use the setting on the instrument.

Trimble terminology matches the measurement modes on the Leica TPS1100 instruments as follows:

<table>
<thead>
<tr>
<th>Trimble terminology</th>
<th>Leica terminology</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD</td>
<td>Standard</td>
</tr>
<tr>
<td>FSTD</td>
<td>Fast</td>
</tr>
<tr>
<td>TRK</td>
<td>Rapid tracking</td>
</tr>
<tr>
<td>DR</td>
<td>Reflectorless</td>
</tr>
</tbody>
</table>
Tip - To quickly change the measurement mode when using Trimble instruments and some Leica TPS instruments, tap the instrument icon in the status bar.

Averaged observations

Use the Averaged observations method to:
- increase the measurement precision with a predefined number of observations
- view the associated measurement standard deviations

While the instrument is carrying out the measurements, standard deviations are displayed for the horizontal (HA) and vertical (VA) angles, and the slope distance (SD).

Auto F1 / F2

When using a servo or robotic instrument, select the Auto F1 / F2 check box to automatically measure a point or stakeout a position on face 2 after the face 1 observation.

Note – The Auto F1 / F2 functionality is not suitable for use when staking with a 5600 instrument using Autolock as it is not able to operate the EDM in tracking mode on face 2.

When Auto F1 / F2 is selected, once the face 1 measurement is completed, the instrument automatically turns to face 2. The point name does not increment, which allows a face 2 observation to be measured with the same point name as the face 1 observation. Once the face 2 measurement is completed, the instrument returns to face 1.

Auto F1 / F2 does not work when starting on face 2, or when the measurement method is set to:
- Angle offset
- H. Angle offset
- V. Angle offset
- Single dist. offset
- Dual-prism offset
- Circular object
- Remote object

Measure distance on face 2

The Measure distance on face 2 option is used in:
- Measure topo, when Auto F1 / F2 is selected
- Measure rounds, Station setup plus, and Resection, when a distance observation is not required on face 2

When the Measure distance on face 2 option is selected, if the face 1 measurement method included a distance measurement, then the measurement method for face 2 is automatically set to Angles only after the face 1 measurement. After the face 2 measurement, the instrument returns to the method used on face 1.

Autolock off for offsets

When the Autolock off for offsets check box is selected, Autolock technology is automatically disabled for the offset measurement and then re-enabled after the measurement.
Set backsight

The Set backsight field appears if you can set the horizontal circle reading on the instrument when the backsight is observed. The options are No, Zero, and Azimuth. If you select the Azimuth option, when you observe the backsight the horizontal circle reading is set to the computed azimuth between the instrument point and the backsight point.

Servo auto turn

When using a servo instrument, the Servo auto turn field in the survey style can be set to HA & VA, HA only, or Off. If you select HA & VA, or HA only, the instrument automatically turns to the point during stakeout, and when a known point is entered into a point name field.

If you are working robotically, or when the Servo auto turn field in the survey style is set to Off, the instrument does not turn automatically. To turn the instrument to the angle indicated on the screen, tap Turn.

Instrument precision

Instrument precisions are used to compute the observation weights as part of the Standard resection and Station Setup Plus computations.

When you use a Trimble total station, the instrument precisions are read from the instrument. You can either use the precisions from the instrument, or provide your own values based on your observing techniques by selecting the Edit instrument precisions check box. For other types of instrument do one of the following:

- Enter the values provided by the instrument manufacturer
- Leave the instrument precision value fields as null

If you leave the instrument precision value fields as null, the following default values are used:

<table>
<thead>
<tr>
<th>Observation</th>
<th>Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal angle precision</td>
<td>1"</td>
</tr>
<tr>
<td>Vertical angle precision</td>
<td>1"</td>
</tr>
<tr>
<td>EDM</td>
<td>3 mm</td>
</tr>
<tr>
<td>EDM (ppm)</td>
<td>2 ppm</td>
</tr>
</tbody>
</table>

Centering error

A centering error can be specified for the instrument and backsight.

The centering error is used to compute the observation weights as part of the Standard resection and Station Setup Plus computations. Set a value appropriate to the estimated accuracy of your instrument/backsight setup.

Offset & Stakeout directions

Select the left and right directions when using a distance offset measurement. For more information, see Offset and stakeout directions.
Conventional Survey – Setup

Conventional instrument type

In a conventional survey style, you need to specify the type of instrument being used. Choose a model made by one of the following manufacturers:

- Trimble
- Leica
- Nikon
- Pentax
- Sokkia
- Spectra Precision
- Topcon
- Zeiss

Choose Manual when you want to key in the measurements.

Choose one of the following SET types:

- SET (Basic), when using a Nikon instrument (if your instrument does not support a Nikon survey style). Make sure that the units on the instrument are the same as the units in General Survey.
- SET (Extended), when using any Sokkia instrument.

When using non-Trimble instruments, disable auto-connect. Some commands used by auto-connect can interfere with the communication of non-Trimble instruments.

Set the baud rate to 38400 to connect to the Nikon NPL-352 (or similar models).

Creating a survey style for the Leica TPS1100 and TPS1200 instruments for a servo or robotic survey

The survey style configuration for a Leica TPS1100 and for a TPS1200 instrument are very similar except for the baud rates.

To create a survey style for a Leica 1100/1200 instrument:

1. From the Trimble Access menu, tap Settings / Survey styles.
2. Tap New.
3. Enter a name in the Style name field.
4. In the Style type field, select Conventional and then tap Accept.
5. Tap Instrument.
6. In the Manufacturer field, select Leica.
7. In the Model field, select either TC1100 Servo (GeoCom) or TC1100 Robotic (GeoCom), depending on whether you will perform a servo or a robotic survey.
8. Set the *Baud rate* and *Parity* to match the settings on the instrument.
 - For the TPS1100 instrument, use a *Baud rate* of 19200 and *Parity* of None.
 - For the TPS1200 instrument, use a *Baud rate* of 115200 and *Parity* of None.

Trimble recommends an HA VA status rate of 2 seconds or slower. Faster rates can interfere with communication to the instrument.

For more information on *Send record acknowledgement*, see below.

Most of the other settings depend on how you want to use the software - configure them as required.

9. Tap *Accept* and then tap *Store* to save the changes.

Configuring a Leica TPS1200 instrument for a servo or robotic survey

In both servo and robotic surveys, General Survey communicates with a Leica TPS1200 instrument using the RCS (Remote Control Surveying) communication protocol through the GeoCOM mode interface.

To communicate with the TPS1200 instrument with a non-Leica controller, you must have the Leica GeoCOM Robotics License Key. You can make a connection to the instrument without the key, but many functions such as Lock, Search, Change face, and Turn to point will not work.

To configure the instrument:

1. From the Main menu on the Leica TPS1200, press 5 [Config...] and then press 4 [Interfaces...].
2. Use the keyboard arrow key to highlight these three devices; [GSI Output], [RCS Mode], and [Export Job], one-by-one and then press F5 [USE] to clear the currently selected devices, if required.
3. Use the keyboard arrow key to highlight [GeoCOM Mode] and then press F5 [USE] to set a [Device]. You need to set the device to [TCP527] and configure the port settings. The device currently displayed may not be [TCP527] but you will configure that in the next step.
4. To set the correct [Device], press F3 [EDIT] and then press F5 [DEVCE]. Press F6 [PAGE] until the [Radios] tab is highlighted and then use the arrow key to highlight [TCP527].
5. Press F3 [EDIT] to configure the comms settings for the [TCP527], as follows:
 - [Baud Rate] = 115200
 - [Parity] = None
 - [Data Bits] = 8
 - [Stop Bits] = 1

These are the default settings used with Leica 1200 TCP527 radios, and these parameters will be set in the base radio connected to the Leica 1200 instrument. Make sure that the rover radio is configured to the same parameters.

Also make sure that the rover radio is set up as a [Remote] radio, the base radio is set up as a [Base] radio, and that they are both on the same [Link] frequency. You are using default settings so these parameters are probably already configured correctly, but if you have communication problems between the radios, check these settings.

To test if the radios are communicating, you can use the Microsoft HyperTerminal application, with each radio connected to a computer.
For more information, refer to your Leica manual or contact your Leica reseller.

6. To save the correct comms settings, press F1 [STORE] and then press F1 [CONT] to continue. The [GeoCOM Mode] screen now shows:
 - [Use Interface] = [Yes]
 - [Port] = [Port 1]
 - [Device] = [TCPS27]
 - [Protocol] = [RS232 GeoCOM]

7. To exit from the main menu, press F1 [CONT] two times.

The instrument is now configured for communication through the TCPS27 radios.

Note – You can communicate with the TPS1200 instrument regardless of the current screen displayed on the instrument - provided that the comms settings on the instrument, the radios, and the General Survey software are correct.

Configuring a Leica TPS1100 instrument for a servo or robotic survey

In both a servo and robotic survey, General Survey communicates with a Leica TPS1100 model instrument using the RCS (Remote Control Surveying) protocol.

To configure the instrument:

1. From the Main menu on the Leica TPS1100, press 5 [Configuration] and then press 2 [Communication mode].
3. Press [Cont] to continue.
5. To put the instrument in the [Measure and Record] screen, press F1 [Back] twice and then press F6 [Meas].

You do not need to configure 2 [GeoCOM parameters], 4 [RCS parameters], and you do not need to put the instrument in [GeoCOM On-Line mode] or switch on RCS mode.

Note – General Survey can only communicate with the instrument when the instrument is in the [Measure and Record] screen. To configure the instrument to start in the [Measure and Record] screen, select 5, 1, 04 from the main menu on the Leica instrument. Set the [Autoexec] to [Measure and record].

Tip - To use the Reflectorless technology of your instrument, configure the instrument to reflectorless. In General Survey, set the Measurement mode to Instr. Default. Alternatively, tap the Target icon in the status bar and select Target DR to switch to Target DR and automatically configure the instrument for reflectorless (DR) mode.

Note - Search does not work when the instrument is in reflectorless (DR) mode.

The Leica TC/TPS1100 survey styles have been designed to operate specifically with the TPS1100 instruments. However, the TC/TPS1100 style may also be used to operate other Leica TPS instruments, for example the Leica TPS1200, using the same protocol.
Configuring a Leica TPS1100 instrument to record data to the General Survey software

You can configure a Leica TPS1100 instrument to trigger a measurement and then record the data to the General Survey software.

Note – *Record mode is supported in the General Survey software only when using Measure topo.*

To enable this function on the Leica instrument, you must configure the format of the data and then configure where to send the data.

Configuring the format of the data

To configure the Rec-Mask so that the correct information is sent to the General Survey software:

1. From the Main menu on the Leica TPS1100, press 5 [Configuration] and then press 1 [Instrument config].
2. Press 05 [Display and Record].
3. Press F4 [RMask].
4. In the [Define] field, select an appropriate [Rec-Mask] to configure.
5. Set the [Mask name] to something appropriate.
6. Set the [REC format] to [GSI16 (16 char)].
7. The [1st word] is set to [Point Id (11)]. You can not change this.
8. Set the [2nd word] to [Hz (21)].
9. Set the [3rd word] to [V (22)].
10. Set the [4th word] to [Slope Dist (31)].
11. Set the [5th word] to /[empty]].
12. Set the [6th word] to [Point Code (71)]. This step is optional.
 - When a point code is output from the instrument, it replaces the code in the code field in the *Measure topo* form.
 - To enter a Point code on the Leica instrument, you may need to configure the Display mask.
 - On the [Main Display and Record] form the [REC-Mask] now appears with the name you gave the recording mask in step 5 above.

Configuring where to send the data

To configure the instrument to send the REC-Mask data to the RS232 port:

1. From the Main menu on the Leica TPS1100, press F5 [SETUP].
2. Set the [Meas job] field to [RS232 RS].
 - The [REC-Mask] field appears with the name you gave the recording mask in step 5 above.
3. To return to the [Measure & Record] screen, ready to start measuring points, press F6 [MEAS].
The Leica TPS1100 instrument is now configured to measure and send the point name, code, and measurement details to the General Survey Measure topo screen when you use F1 [All] on the Leica TPS1100 instrument.

Measure topo is the only place in the General Survey software where you can trigger a measurement on the Leica instruments and have the data stored to the controller. Depending on the model (and possibly the firmware) of your instrument, you may need to configure the General Survey software. Some models require an acknowledgement from the controller that they have received the data.

If the instrument reports a comms error [Comm. error : wrong response.] and fails to increment the point name on the instrument, then you need to send an acknowledgment to the instrument.

To send an acknowledgement, select the Send record acknowledgement option in the Leica style, or in Measure topo / Options.

Note – If you selected the Send record acknowledgement check box, the status line in the General Survey software is disabled and the target icon is not updated with Lock status information from the instrument. View the Lock status through the instrument panel.

In the General Survey software, configure the View before storage field as required:

- When View before storage is on, the measurement details appear, and you can change the code field before storing the observation.
- When View before storage off, the measurement details appear briefly on the large button before the observation is stored.

Note –

- Records, 11, 21, 22, 31, and 71 (as described above) are the only records read by the General Survey software. All other records are ignored.
- The code field in the Leica software annotated [Point code] can be sent to the General Survey software.
- The code field in the Leica software annotated [Code] cannot be sent to the General Survey software.
- The point name must be defined in the Leica software and always replaces the point name in the Measure topo form. If View before storage is on, you do get the opportunity to change the point name.
- If the [Point code] has been defined in the Leica software it always replaces the Code in the Measure topo form.
- If the [Point code] is null in the Leica software it does not replace the code on the Measure topo form.
- If View before storage is on in the General Survey software, you can change the code before the observation is stored.
- When using Auto F1/F2 the General Survey software does not increment the point name for the face 2 observation. This feature does not work if the point names are sent from the Leica instrument. For Auto F1/F2 to work you must set the correct point names in the Leica instrument.
Configuring the display mask
To configure the Display mask so that the [Point code] field is available on the instrument:
1. From the Main menu on the Leica TPS1100, press 5 [Configuration] and then press 1 [Instrument config].
2. Press 05 [Display and Record].
3. Press F3 [DMask].
5. Set the [Mask name] to something appropriate.
6. Set the [word] corresponding to the position that you want the point code field displayed to [Point code].
7. Set the other [word] values as required.
 On the [Main Display and Record] form the [Displ.Mask] now appears with the name you gave the display mask in step 5 above.

Configure topo point settings
A topo point is a previously configured method of measuring and storing a point. Configure this type of point when you create or edit a survey style.
To configure the survey style, from the Trimble Access menu, tap Settings / Survey styles / Topo point.
Use the Measure display field to configure how the observations are displayed on the controller.
Use the Auto point step size field to set the increment size for automatic point numbering. The default is 1, but you can use larger step sizes and negative steps.
Select the View before storage check box to view observations before they are stored.

Automatically connecting to a conventional instrument
By default, the Trimble Access software automatically attempts to connect to the instrument as soon as you start the software.

Note – To connect to a non-Trimble instrument, you must force a connection by starting the survey. When using non-Trimble instruments, disable auto connect. Some commands used by auto connect can interfere with the communication of non-Trimble instruments.

Configuring auto connect settings
To configure the auto-connect options, do one of the following:
- Tap the auto-connect icon in the status bar before you connect to an instrument.
- From the Trimble Access menu, tap Settings and then select Connect / Auto connect.
Trimble conventional instruments that can be automatically connected to are organized into the following groups:

- Trimble VX Spatial Station or Trimble S Series total station
- Trimble SX10 scanning total station
- Trimble 5600/3600 total stations

If you connect to only one of these types of instrument, speed up the automatic connection time by clearing the check box(es) to permanently disable auto connect for the instrument type(s) you do not connect to.

If you are running the Trimble Access software on a supported third-party Windows computer, and you want to connect to that computer’s internal GPS receiver, select the appropriate COM port in the Internal GPS field.

In the Auto connect options screen, tap the required connection method button to go to the appropriate settings screen.

- Bluetooth
- Wi-Fi
- Radio

You can also configure wireless connections from Settings. From the Trimble Access menu tap Settings and then select Connect and select the connection method.

Connecting to the instrument

When the software is trying to automatically connect to an instrument, the auto-connect icon flashes. There is a different icon for each type of instrument.

To auto-connect to a Trimble instrument, the software cycles through a set of connection protocols for each instrument group enabled in the Auto connect options screen. The length of time required to complete the cycle and connect to the instrument depends on where the software is in the auto-connect cycle when the instrument is connected.

You do not have to wait for auto connect to connect to your instrument. To force a connection, select the survey style and start the survey at any time.

If the PIN function is enabled, the Unlock instrument screen appears when connecting to a Trimble total station. Enter the PIN and then tap Accept.

Temporarily disabling auto connect

When you use Instrument functions to disconnect from the total station, auto-connect is temporarily disabled.

If the auto connect icon displays multiple icons and a red x, then auto connect has been disabled for all instrument groups.

To re-enable auto connect, tap the auto connect icon. When auto connect has been temporarily disabled, a single tap re-enables auto connect, and a second tap is required to display the Auto connect options screen.
Preparing for a robotic survey

To prepare a Trimble servo total station for a robotic survey, the instrument must be turned on, leveled, with the correct radio settings, and if required, a search window defined.

If the instrument is level, has the correct radio settings, and you are using the autocentered search window, press the trigger button to turn on the instrument for a robotic survey.

To configure the Radio channel and Network ID on a Trimble servo total station without using the General Survey software, select [Radio settings] on the instrument through the Face 2 menu display. For more information, refer to the documentation for your instrument.

Note –

- The internal radio settings are set when the General Survey software connects to the instrument. The remote radio settings are set later when you start the rover survey.

- General Survey cannot communicate with the Trimble servo total station when the onboard programs are in use. Once you finish using the instrument’s onboard programs, select [Exit] from the [Setup] menu to return to the [Waiting for connection] menu.

When the instrument is suspended ready for robotic operation, it switches off to conserve power. The internal radio remains switched on so that the rover radio can communicate with the instrument when you start the rover survey.

For more information, see Radio settings.

Preparing the total station for a robotic survey

1. Connect the controller to the Trimble robotic total station using a cable or Bluetooth wireless technology.
 - If you are using a Trimble CU controller, attach the controller to the total station and then press the trigger button to turn on the instrument and controller.
2. Start the General Survey software and connect to the instrument.
3. Level the instrument and then tap Accept in the leveling screen. Tap Esc to exit the Corrections screen and the Survey Basic screen if they appear.
5. Set the Radio channel and Network ID and then tap Accept. If you are using an external radio, you must reconfigure the radio port setting on the controller (see Using a controller with an external radio).
6. Do one of the following:
 - If you plan to use an autocentered search window, suspend the controller by pressing the Power key. You do not need to define the search window now.
 - To set a search window:
 a. From the main menu, select Measure / Start robotic.
 b. Select Define now and tap Accept.
 c. Aim the instrument to the top left corner of the search window and tap OK.
 d. Aim the instrument to the bottom right corner of the search window and tap OK.
e. When prompted, disconnect the controller from the instrument and tap OK. If you are using a Trimble CU controller, remove the controller from the instrument and attach it to the robotic holder. The General Survey software auto-connects to the instrument radio. You are now ready to perform a station setup.

Preparing the Trimble 5600 instrument for a robotic survey

1. With the Trimble CU attached to the Trimble 5600 instrument, press the trigger button to turn on the instrument and controller.
2. Start the General Survey software, level the instrument and then tap Accept in the leveling screen. Tap Esc to exit the Corrections screen and the Survey Basic screen if they appear.
3. From the Trimble Access menu, tap Settings / Connect / Radio settings.
4. Set the Radio channel, Station address and Remote address and then tap Accept.
5. Do one of the following:
 * To set a search window:
 a. From the main menu, select Measure / Start robotic.
 b. Aim the instrument to the top left corner of the search window and tap OK.
 c. Aim the instrument to the bottom right corner of the search window and tap OK.
 d. Tap OK to suspend the controller ready for robotic operation.
 * If you plan to use an autocentered search window, press the power key on the Trimble CU to suspend the controller. You do not need to define the search window now.
6. Remove the controller from the instrument and then attach the controller to the robotic holder:
 a. Connect the Trimble CU to Port A on the remote radio using the Trimble CU holder or a 0.4 m, 4-pin Hirose cable.
 b. Turn on the active target or connect it to Port B on the remote radio.
7. Press the power key on the Trimble CU. The General Survey software auto-connects to the instrument radio and displays the leveling screen. If required, level the instrument and then tap Accept.

You are now ready to perform a station setup.

Note – The 5600 is re-initialized to compensate for the earlier removal of the controller.

Station setups – Overview

In a conventional survey, you must complete a station setup to orientate the instrument.

Note – Before you can use the Turn to or Joystick functions to turn a servo or robotic instrument, you must have a current station setup.
Select the station setup appropriate to your requirements:

<table>
<thead>
<tr>
<th>Select...</th>
<th>If...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station setup</td>
<td>You want to perform a standard station setup or if you are performing a traverse type survey.</td>
</tr>
<tr>
<td>Station setup</td>
<td>You want to perform a station setup by making observations to more than one backsight point. plus</td>
</tr>
<tr>
<td>Resection</td>
<td>You do not know the coordinates for the instrument point, and you can determine the coordinates by making observations to known backsight points.</td>
</tr>
<tr>
<td>Refine</td>
<td>You want to establish the position of an occupied point relative to a baseline.</td>
</tr>
<tr>
<td>Scan station</td>
<td>You want to capture scans or panoramas using the Trimble SX10 scanning total station and the instrument is located at a non-coordinated point.</td>
</tr>
<tr>
<td>Use last</td>
<td>You are satisfied that the last completed station setup is still valid, and you wish to continue observing points from this station.</td>
</tr>
</tbody>
</table>

Once you have completed a station setup, the Measure menu provides a New <station setup> option. Select this option to perform the same type of station setup as the one previously completed, without first ending the survey. To perform a different type of setup you must first end the survey.

Station coordinates and instrument height

For a 2D or planimetric survey, leave the instrument height field set to null (?). No elevations are calculated. Unless you are using a Scale only projection, a project height must be defined in the coordinate system definition. The General Survey software needs this information to reduce measured ground distances to ellipsoid distances and to compute 2D coordinates.

If the point is available from a linked file, select the linked file for the job and then enter the point name in the Instrument point name or Backsight point name field. The point is automatically copied to the job.

If you cannot determine the coordinates for the instrument point and/or backsight point, you can key them in or measure them later using GNSS (provided that there is a valid GNSS site calibration). The coordinates of any points measured from that station are then computed.

If you enter the instrument point later, make sure that you choose to overwrite the original instrument point in the Duplicate point form. The coordinates of any points measured from that station are then computed.

You can use the Point manager to edit the coordinates of the instrument point and/or backsight point. If you do, then the positions of all records that are computed from that station setup position may change.

When measuring to the bottom notch on a Trimble total station, tap [] and then select Bottom notch. Enter the height measured to the top ridge of the bottom notch on the instrument. General
Survey corrects this measured slope value to true vertical and adds the offset (Ho) to calculate true vertical to the trunnion axis.

Note – *If you select Bottom notch, the minimum slope distance (Hm) that you can enter is 0.300 meters. This is approximately the minimum slope distance that can be physically measured. If this minimum is too low, you must measure to the top mark.*

For details, see the following figure and tables.

<table>
<thead>
<tr>
<th>Value</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ho</td>
<td>Offset from bottom notch to trunnion axis. The value of the offset depends on the connected instrument. Refer to the following table.</td>
</tr>
<tr>
<td>Hm</td>
<td>Measured slope distance.</td>
</tr>
<tr>
<td>Hc</td>
<td>Hm corrected from slope to true vertical.</td>
</tr>
<tr>
<td>HI</td>
<td>Hc + Ho. True vertical instrument height.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Connected instrument</th>
<th>Offset value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trimble VX Spatial Station or Trimble S Series total station</td>
<td>0.158m (0.518 ft)</td>
</tr>
<tr>
<td>Trimble S Series traverse prism</td>
<td>0.158m (0.518 ft)</td>
</tr>
<tr>
<td>Trimble SX10 scanning total station</td>
<td>0.138m (0.453 ft)</td>
</tr>
</tbody>
</table>

Loading station data to a Trimble 5600 and ATS instrument

When you complete a station setup with a Trimble 5600 or ATS instrument, the General Survey software loads the station information into the instrument.

Note –
- *The instrument does not accept a null instrument height. If the instrument height is set to null in the General Survey software, then the software writes 0 to label V,50 and clears bit 1 in label PV,52.*
The instrument does not accept a null H.Dist. If the General Survey software cannot compute an H.Dist between the instrument and the backsight point (that is, Keyed in azimuth, Angles only, or H.Angle only backsight observation) then the software writes 0 to label PV,51.

Station setup

Select Station setup to perform a standard station setup to one backsight, or if you are performing a traverse type survey. If you want to measure more than one backsight point, use Station setup plus.

Station setup options

Tap Options to configure Station setup to match the way that you prefer to work. You can configure the default point names, default heights, default instrument coordinates, and the default azimuth. Default instrument coordinates and default azimuth are used only if the instrument point is not already coordinated, and an azimuth to the backsight cannot be computed.

Default point names

The Default point names option determines the default values for the instrument and the backsight point name fields each time you perform a station setup. If you:

- Always use the same names for your instrument and backsight points, select Last used. Use this method if you always use the default instrument coordinates, or if you repeatedly set up on the same known point.
- Are performing a traverse type survey, select Traversing. When you start a new station setup, by default, the instrument uses the first foresight point observed from the last station setup for the Instrument point name, and the instrument point name used in the last station setup for the Backsight point name.
- Want to key in or select the instrument and backsight point names each time you perform a station setup, select All null.
- Want the software to automatically increment the instrument point name, select Auto increment.

These are only default values. You should select the option that matches your normal workflow. You can override the default values for any particular station setup.

Note – Do not confuse the Last used option with the Use last survey menu option. The Last used option applies to a new station setup. The last values are used even across different jobs. The Use last menu option reinstates the last station setup. No new station setup is performed.

Default heights

The Default heights option determines the default values for the instrument and the backsight point height fields each time you perform a station setup.

- If you always use the same heights for your instrument and backsight points, select Last used. This option is available only if you set the Default point names option to Last used.
If you are using the Trimble traverse kit (so that the last measured foresight and instrument heights can be used as the new instrument and backsight heights), select Move forward. This option is available only if you set the Default point names option to Traversing.

If you want to key in a new instrument and backsight height for each station setup, select All null.

Default instrument coordinates

If the instrument point does not exist, the default instrument coordinates are used. This is particularly useful if you work in a local coordinate system, and always set up your instrument on coordinate (0,0,0) or (1000N, 2000E, 100El), for example. If you leave the Default instrument coordinates set to null, you can key in coordinates for instrument points that do not exist when you perform a station setup.

Note – If you always set up your instrument on a known point then leave the Default instrument coordinates field set to null. This ensures that you do not accidentally use the default value if you incorrectly enter the name of the instrument point name.

Default azimuth

You can set a Default azimuth. This value is used only if an azimuth cannot be computed between the instrument and backsight points.

Note – Always set up your instrument on a known point, and use a known azimuth, then leave the Default instrument coordinates and Default azimuth fields set to null. This ensures that you do not accidentally use default values if you incorrectly enter the name of the instrument and/or the backsight point names.

Measure backsight

The General Survey software normally expects you to measure a backsight point to orient your survey. If your survey practice does not require you to measure to the backsight, clear the Measure backsight check box on the second page of options. The software automatically creates a virtual backsight, Backsightxxxx (where xxxx is a unique suffix, for example, Backsight0001), using the current instrument orientation as the azimuth.

Performing a standard station setup

1. From the main menu, select Measure / <Style name> / Station setup. If you have only one style, it is automatically selected.

 When using a non-Trimble instrument, you must select the correct survey style before you connect the controller to the instrument. Otherwise, the instrument and controller may fail to connect.

2. Set the corrections associated with the instrument.

 If the Corrections form does not appear, tap Options from the Station setup screen to set the corrections. To make the Corrections form appear on startup, select the Show corrections on startup option.
For some instruments, the General Survey software automatically checks to see if various corrections (PPM, prism constant, and curvature and refraction) are being applied correctly. When you select Station setup, messages showing what has or has not been checked are displayed in the status line. If the General Survey software finds that the corrections are being applied twice, a warning message appears. When using the 5600 3600 instrument style, all corrections are applied in General Survey.

3. Enter the instrument point name and the instrument height. If the point is not already in the database, you can key it in or leave it as null.

When measuring to the bottom notch on a Trimble total station, tap V.Dist and then select Bottom notch. Enter the height measured to the top ridge of the bottom notch on the instrument. General Survey corrects this measured slope value to true vertical and adds the offset (Ho) to calculate true vertical to the trunnion axis. For details, see figure and tables in Station setups – Overview.

4. Enter the backsight point name and the target height. If there are no coordinates for the point, you can key in an azimuth.

When measuring to the bottom notch on a Trimble prism base, tap V.Dist and then select Bottom notch. For details, see figure and tables in Station setups – Overview.

If you do not know the azimuth, you can enter an arbitrary value and then edit the azimuth record later, in review.

5. Choose an option in the Method field. The options are:
 - Angles and distance - measure horizontal and vertical angles and slope distance
 - Averaged observations - measure horizontal and vertical angles and slope distance for a predefined number of observations
 - Angles only - measure horizontal and vertical angles
 - H. Angle only - measure horizontal angle only
 - Angle offset - measure the slope distance first, the instrument can then be repointed and then measure the horizontal and vertical angles
 - H. Angle offset - measure the vertical angle and slope distance first, the instrument can then be repointed and then measure the horizontal angle
 - V. Angle offset - measure the horizontal angle and slope distance first, the instrument can then be repointed and then measure the vertical angle
 - Distance offset - enter the left/right, in/out or V.Dist offset from the target to the object when a point is inaccessible and then measure horizontal and vertical angles and slope distance to the offset object

When you use an offset method, tap Options and then set the Offset & Stakeout directions perspective. When using Autolock technology and measuring offset points, select the Autolock off for offsets check box. When enabled, Autolock technology is automatically disabled for the offset measurement and then re-enabled after the measurement.

6. Sight the center of the backsight target and then tap Measure.

Select the View before storage check box to view observations before they are stored.
7. If Auto F1/F2 is enabled:
 a. Tap Store to store the F1 observation. The instrument changes face.
 b. Sight the center of the backsight target and then tap Measure.
8. If the residuals for the station setup are acceptable, tap Store. The residuals are the difference between the known position and the observed position of the backsight point.
 To change the display, tap the view display button on the left of the measurement information.
Station setup is complete.

For more information
- Prepare for a robotic survey
- Station setups – Overview
- Station setup plus
- Resection
- Traverse
- Advanced geodetics support

Station setup plus

In a conventional survey, use station setup plus to perform a station setup on a known point by making observations to one or more backsight points.

WARNING - If the station setup point is a traverse station that you plan to adjust, do not measure more than one backsight point. Clear the Backsight check box for any additional points so that they are measured as foresights.

For more details, see:
- Performing a station setup plus
- Skipping observations
- Station setup – Residuals screen
- Point – Residuals screen
- Point details screen
- Station setup results screen

Performing a station setup plus

1. From the main menu, select Measure / <Style name> / Station setup plus.
2. Set the corrections associated with the instrument.
 If the Corrections form does not appear, tap Options and then select the Show corrections on startup check box.
3. Enter the instrument point name. If the point is not already in the database, key it in or leave it as null.
 If the coordinates for the instrument point are not known, perform a Resection to known points. This will provide the coordinates.
4. If applicable, enter the instrument height and then tap Accept.
 When measuring to the bottom notch on a Trimble total station, tap \(\text{Bottom notch} \) and then select Bottom notch. Enter the height measured to the top ridge of the bottom notch on the instrument. General Survey corrects this measured slope value to true vertical and adds the offset (Ho) to calculate true vertical to the trunnion axis. For details, see figure and tables in Station setups – Overview.
 WARNING - Before you continue, tap Options and make sure that the Face order setting is correct. You cannot change this setting after you start measuring points.
5. Enter the first backsight point name and the target height, if applicable. If there are no coordinates for the point, you can key in an azimuth.
 When measuring to the bottom notch on a Trimble prism base, tap \(\text{Bottom notch} \) and then select Bottom notch. For details, see figure and tables in Station setups – Overview.
 Note – To include foresight points during station setup plus, clear the Backsight check box. Foresight points do not contribute to the station setup result.
6. Choose an option in the Method field.
7. Sight the target and then tap Measure.
 The Station setup residuals screen appears.
 See the following sections for more information on what do next.
 Tip - Select Interrupted target measurement if the measurement is likely to be interrupted, for example, when measuring in traffic.

Skipping observations

When using Automate rounds you can configure the software to automatically skip obstructed foresight targets.
If the instrument cannot measure the point and Skip obstructed foresights is **enabled**, it skips that point and moves onto the next point in the rounds list.
If the instrument cannot measure the point and Skip obstructed foresights is **disabled**, a message appears after 60 seconds to indicate that the prism is obstructed. The General Survey software continues to try to measure to the target until instructed to skip the point. To do this, tap Ok for the obstructed prism message, tap Pause and then tap Skip.
When the General Survey software reaches the end of a rounds list in which points have been skipped, the following message appears:
Observe skipped points?
Tap Yes to observe the points that were skipped during that round. The observations can be skipped again if required. Tap No to end the round.
If a point is skipped in one round, all subsequent rounds continue to prompt for observations to that point.
When one observation from a pair of face 1 and face 2 observations has been skipped, the unused observation is automatically deleted by the General Survey software. Deleted observations are stored in the General Survey database and can be undeleted. Undeleted observations can be processed in the office software, but are not automatically used to recompute Mean Turned Angle (MTA) records in the General Survey software. Backsight observations cannot be skipped using the *Skip obstructed foresights* option.

Station setup – Residuals screen

The *Station setup residuals* screen lists the residuals for each point observed in the station setup. A residual is the difference between the known position and the observed position of the backsight point(s).

Use the *Station setup residuals* screen to do the following:

- To observe more points, tap *+ Point*. In a conventional only survey, when one measurement is completed, the General Survey software can provide navigation information for further points, and a *Navigate* softkey is available. Tap *Navigate* to navigate to another point. If connected to a GNSS / GPS receiver or using a Trimble controller with internal GPS, the General Survey software can provide navigation information for any point, and a *Navigate* softkey is available. Tap *Navigate* to navigate to another point.
- To view the Station setup results, tap *Results*.
- To store the station setup, tap *Results* and then tap *Store*.
- To view/edit the details of a point, highlight the point and then tap *Details*.
- To view/edit the residuals of each individual observation to a point, tap the point in the list once.
- To start measuring rounds of observations to the points, tap *End face*.

Tips

- To highlight an item in a list, tap and hold the item for at least half a second.
- To sort a column in ascending or descending order, tap the column header. Tap the *Point* column header to sort the point in ascending or descending observed order.
- To change the residual display view, select an option from the drop-down list in the *Residuals* screen.
- To navigate to a point, tap *+ Point* and then tap *Navigate*.

Note –

- *A foresight point that does not yet exist in the database has null residuals in the Residuals form.*

- *You cannot add the same point to a station setup more than once. To take further measurements to points already measured, select End Face. For more information, see Measuring rounds in station setup plus or resection.*

Point – Residuals screen

The *Point residuals* screen lists the residuals for each observation to a point in the station setup.
Use the *Point residuals* screen to do the following:

- To disable an observation, highlight it and then tap *Use*.
- To view the details of an observation, highlight it and then tap *Details*.
- To return to the *Station setup residuals* screen, tap *Back*.

Note – If you have measured face 1 and face 2 observations to a point, turning off the observation for one face also turns off the observation for the other face.

WARNING - If you turn off some (but not all) of the observations to a backsight point, the solution for the resection is biased and there is different number of observations to each backsight point.

Point details screen

Use the *Point details* screen to:

- view the mean observation for a point in the station setup
- change the target height and/or prism constant for all observations to a point

Station setup results screen

The *Station setup results* screen shows information about the station setup solution.

To complete the station setup and store it, tap *Store*. During a *Station setup plus*, nothing is stored in the job until you tap *Store* in the *Results* screen.

For more information

- Prepare for a robotic survey
- Station setups – Overview
- Measuring rounds in station setup plus or resection
- Advanced geodetics support
- Resection
- Traverse

Measuring rounds in station setup plus or resection

This topic describes how to measure multiple sets (rounds) of observations during a *Station setup plus or Resection*.

A round can consist of either:

- a set of single face 1 observations
- a set of matched face 1 and face 2 observations

Using *Station setup plus or Resection*, measure the points that you want to include in the rounds. When the rounds list has been built, tap *End Face*.
General Survey software:

- Directs you to change face when required. With servo-driven instruments, this happens automatically.
- Defaults to the correct point details for each observed point.
- Displays the results. This allows you to delete bad data.

For more details, see:
Building a rounds list
Measuring rounds of observations
Skipping observations
Residuals screen
Point – Residuals screen
Point details screen
Automated rounds

Building a rounds list

The rounds list contains the points used in the rounds observations. As each point is added to a *Station setup plus or Resection*, General Survey software automatically builds this list. For more information, see *Station setup plus or Resection*.

When the rounds list is complete, tap *End face*. General Survey software prompts you for the next point to be measured in the rounds of observations.

Note –

- You cannot edit the rounds list. Before you tap *End face*, be sure to observe all points to include in the rounds observations.
- The top of the Measure rounds screen shows which face the instrument is on, the number of the current round, and the total number of rounds to be measured (shown in brackets). For example, Face 1 (1/3) shows that the instrument is on face 1 of the first round of three.
- Within *Station setup plus or Resection*, the maximum number of points in a round is 25.

Measuring rounds of observations

Once the rounds list has been built, tap *End face*. General Survey software enters the default point name and target information for the next point in the rounds. To measure a point, tap *Measure*. Repeat this until all observations in the round are completed.

When all observations are complete, General Survey software shows the *Residuals screen*.

Note –

- When using servo or robotic instruments, check that the instrument has sighted the target accurately. Manually adjust it if necessary. Some instruments can perform accurate sighting automatically. For information on the instrument specifications, refer to the instrument manufacturer’s documentation.
- If you are using a servo or robotic instrument to measure a known (coordinated) point, tap *Turn*.

Trimble Access General Survey help 243
Alternatively, with a servo instrument, set the Servo auto turn field in the survey style to HA & VA, or HA only to automatically turn the instrument to the point.

- If you tap Esc in the Measure screen, the current round is discarded.

Skipping observations

When using Automate rounds you can configure the software to automatically skip obstructed foresight targets.

If the instrument cannot measure the point and Skip obstructed foresights is enabled, it skips that point and moves onto the next point in the rounds list.

If the instrument cannot measure the point and Skip obstructed foresights is disabled, a message appears after 60 seconds to indicate that the prism is obstructed. The General Survey software continues to try to measure to the target until instructed to skip the point. To do this, tap Ok for the obstructed prism message, tap Pause and then tap Skip.

When the General Survey software reaches the end of a rounds list in which points have been skipped, the following message appears:

Observe skipped points?

Tap Yes to observe the points that were skipped during that round. The observations can be skipped again if required. Tap No to end the round.

If a point is skipped in one round, all subsequent rounds continue to prompt for observations to that point.

When one observation from a pair of face 1 and face 2 observations has been skipped, the unused observation is automatically deleted by the General Survey software. Deleted observations are stored in the General Survey database and can be undeleted. Undeleted observations can be processed in the office software, but are not automatically used to recompute Mean Turned Angle (MTA) records in the General Survey software.

Backsight observations cannot be skipped using the Skip obstructed foresights option.

Residuals screen

At the end of each round, the Residuals screen appears. For more information, see Station setup plus or Resection.

After you measure rounds, Std Dev becomes available in the Residuals screen. To view the standard deviations of the observations for each point, tap Std Dev.

Note –

- To change the residual display view, use the drop-down list in the Residuals screen.

- During a station setup plus or resection, nothing is stored to the job until you tap Close and Store to complete the station setup.

Point – Residuals screen

The Point - Residuals screen shows the residuals for the individual observations to a particular point. For more information, see Station setup plus or Resection.
Note – If you have measured both face 1 and face 2 observations to a point, when you turn off a face 1 observation, you also turn off the corresponding face 2 observation. Similarly, when you turn off a face 2 observation, you also turn off the corresponding face 1 observation.

Point details screen

The Point details screen shows the point name, code, backsight status, target height, prism constant, mean observation, and standard errors for the observed point. For more information, see Station setup plus or Resection.

Automated rounds

The Automate rounds option is available for Trimble servo total stations. When you select Automate rounds, the instrument automatically completes all rounds after the rounds list has been built.

If you tap + Round after the instrument has completed the required number of rounds, the instrument performs an extra round of observations. If you want the instrument to perform more than one extra round, enter the total number of required rounds before you tap + Round.

For example, to measure three rounds automatically, and then measure another three rounds:

1. Enter 3 in the Number of rounds field.
2. Once the instrument has measured 3 rounds, enter 6 in the Number of rounds field.
3. Tap + Round. The instrument measures the second group of 3 rounds.

Note – Targets observed without Autolock are automatically paused.

Station elevation

In a conventional survey, use the station elevation function to determine the elevation of the instrument point by making observations to points with known elevations.

Note – Use only points that can be viewed as grid coordinates. (The station elevation calculation is a grid calculation.)

A station elevation needs at least one of the following:
- one angles and distance observation to a known point, or
- two angles only observations to different points

To perform a station elevation:

1. From the main menu, select Measure and then perform a station set up. See Station setups – Overview.
2. Select Measure / Station elevation. The instrument point name and code appear. If you entered the instrument height during the station setup, that also appears. Otherwise, enter the instrument height now. Tap Accept.

When measuring to the bottom notch on a Trimble total station, tap and then select Bottom notch. Enter the height measured to the top ridge of the bottom notch on the instrument. General Survey corrects this measured slope value to true vertical and adds the
offset \((Ho)\) to calculate true vertical to the trunnion axis. For details, see figure and tables in Station setups – Overview.

3. Enter the point name, code, and target details for the point with the known elevation. Tap Measure. Once the measurement is stored, the Point residuals appear.

4. From the Point residuals screen, tap one of the following softkeys:
 - +Point, to observe additional known points
 - Details, to view or edit point details
 - Use, to enable or disable a point

5. To view the station elevation result, tap Results in the Point residuals screen. To accept the result, tap Store.

 Note – The elevation determined through this station elevation method overwrites any existing elevation for the instrument point.

Resection

In a conventional survey, the resection function is used to perform a station setup and determine coordinates for an unknown point by making observations to known backsight points. The General Survey software uses a least-squares algorithm to compute the resection.

Note – To determine the elevation of a point with known 2D coordinates, perform a station elevation once you have completed a station setup.

A resection needs at least one of the following:

- Two angles and distance observations to different backsight points
- Three angles-only observations to different backsight points
- One angles and distance observation to a close-by point and one angles-only observation to a backsight point. This is a special case called eccentric station setup.

WARNING - Do not compute a resection point using WGS84 control and then change the coordinate system or perform a site calibration. If you do, the resection point will be inconsistent with the new coordinate system.

For more details, see:
- Resection
- Resection – Residuals screen
- Point – Residuals screen
- Point details screen
- Resection results screen
- Eccentric station setup

Performing a resection

1. From the main menu, select Measure / <Style name>/ Resection. If you have only one style, it is automatically selected.
2. Set the **corrections** associated with the instrument.

 If the ** Corrections** form does not appear, tap ** Options** and then select the **Show corrections on startup** check box.

3. Enter an instrument point name and instrument height, if applicable.

 Note – *Once the resection is started you cannot enter a different instrument height.*

 When measuring to the bottom notch on a Trimble total station, tap \[\] and then select **Bottom notch**. Enter the height measured to the top ridge of the bottom notch on the instrument. General Survey corrects this measured slope value to true vertical and adds the offset (\(Ho \)) to calculate true vertical to the trunnion axis. For details, see figure and tables in **Station setups – Overview**.

4. Set the **Compute station elevation** check box and then tap **Accept**.

 Note – For a 2D or planimetric survey, clear the **Compute station elevation** check box. No elevations are calculated.

 WARNING - Before you continue, tap **Options** and make sure that the **Face order** setting is correct. You cannot change this setting after you start measuring points.

5. Enter the first backsight point name and the target height, if applicable.

 When measuring to the bottom notch on a Trimble prism base, tap \[\] and then select **Bottom notch**. For details, see figure and tables in **Station setups – Overview**.

 Note – *In a resection, you can only use backsight points that can be viewed as grid coordinates. This is because the resection calculation is a grid calculation.*

 If you perform a resection or station setup plus while running an integrated survey, you can measure backsight points with GNSS. To do this, tap the **Options** softkey and then select **Auto measure GNSS**. Enter an unknown point name in the point name field. The General Survey software prompts you to measure the point with GNSS using the specified point name. The ** Measure** softkey shows both a prism and a GNSS symbol. The General Survey software first measures the point with GNSS and then measures with the conventional instrument.

 Make sure that you have a site calibration loaded when combining conventional and GNSS measurements.

6. Choose an option in the **Method** field.

7. Sight the target and then tap **Measure**.

8. Measure further points.

 Note – *To include foresight points during resection, clear the Backsight check box. Foresight points do not contribute to the resection result.*

 In a conventional survey, when two measurements are completed, the General Survey software can provide navigation information for further points, and a **Navigate** softkey is available. Tap **Navigate** to navigate to another point.

 If connected to a GNSS / GPS receiver or using a Trimble controller with internal GPS, the General Survey software can provide navigation information for any point, and a **Navigate** softkey is available. Tap **Navigate** to navigate to another point.

9. When there is enough data for the General Survey software to calculate a resected position, the **Resection residuals** screen appears.
Tip - Select Interrupted target measurement if the measurement is likely to be interrupted, for example, when measuring in traffic.

Resection – Residuals screen

The Resection residuals screen lists the residuals for each point observed in the resection. A residual is the difference between the known position and the observed position of the backsight point(s).

Use the Resection residuals screen to do the following:

- To observe more points, tap + Point.
- To view the resection results, tap Close.
- To store the resection, tap Close and then tap Store.
- To view/edit the details of a point, highlight the point and then tap Details.
- To view/edit the residuals of each individual observation to a point, tap the point in the list once.
- To start measuring rounds of observations to the points, tap End face.

Tips

- To highlight an item in a list, tap and hold the item for at least half a second.
- To sort a column in ascending or descending order, tap the column header. Tap the Point column header to sort the point in ascending or descending observed order.
- To change the residual display view, select an option from the drop-down list in the Residuals screen.

Note –

- A foresight point that does not yet exist in the database has null residuals in the Residuals form.
- You cannot add the same point to a resection more than once. To take further measurements to points already measured, select End Face. For more information, see Measuring rounds in station setup plus or resection.
- Within Station setup plus or Resection, the maximum number of points in a round is 25.

Point – Residuals screen

The Point residuals screen lists the residuals for each observation to a point in the resection.

Use the Point residuals screen to do the following:

- To disable an observation, highlight it and then tap Use.
- To view the details of an observation, highlight it and then tap Details.
- To return back to the Resection residuals screen, tap Back.

Note – If you have measured face 1 and face 2 observations to a point, turning off the observation for one face will also turn off the observation to the other face.

WARNING - If you turn off some (but not all) of the observations to a backsight point, the solution for the resection will be biased because there will be a different number of observations to each backsight point.
Point details screen

The *Point details* screen shows the mean observation for a point in the resection.

Use the *Point details* screen to do the following:

- change whether the horizontal component or the vertical component of a point will be used in the resection calculation
- change the target height and/or prism constant for all observations to that point

Note – *You can only change which components of a point will be used in the resection calculation if you have selected the compute station elevation option, and the observed point has a 3D grid position.*

The *Used for* field shows the point components used in the resection calculation. See the following table.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>H (2D)</td>
<td>Use only the horizontal values for that point in the calculation</td>
</tr>
<tr>
<td>V (1D)</td>
<td>Use only the vertical values for that point in the calculation</td>
</tr>
<tr>
<td>H,V (3D)</td>
<td>Use both the horizontal and vertical values for that point in the calculation</td>
</tr>
</tbody>
</table>

Resection results screen

The *Resection results* screen shows information about the resection solution.

To complete the resection and store it, tap *Store*. During a resection, nothing is stored in the job until you tap *Store* in the *Resection results* screen.

Eccentric station setup

You can use the resection function to perform an eccentric station setup, where the station setup is performed in view of a close-by control point and in view of at least one backsight point. For example, use this setup if you cannot set up over the control point, or you cannot see any backsight points from the control point.

An eccentric station setup needs at least one angles and distance observation to a close-by control point, and one angles-only observation to a backsight point. Additional backsight points can also be observed during an eccentric station setup. You can measure backsight points with angles-only observations or with angles and distance observations.

For more information

- Prepare for a robotic survey
- Station setups – Overview
- Station setup
- Measuring rounds in station setup plus or resection
- Advanced geodetics support
Refline

Refline is the process of establishing the position of an occupied point relative to a baseline. To perform a refline station establishment, take measurements to two known or unknown baseline definition points. Once this occupation point is defined, all subsequent points are stored in terms of the baseline using station and offset. This method is often used when setting out buildings parallel to other objects or boundaries.

To perform a refline station setup:

1. From the main menu, select *Measure / <Style name>/ Refline*.
2. Set the corrections associated with the instrument.
 - If the Corrections form does not appear, tap Options and then select the *Show corrections on startup* check box.
3. Enter an *Instrument point name* and *Instrument height*, if applicable.
 - When measuring to the bottom notch on a Trimble total station, tap ![Bottom notch](image) and then select *Bottom notch*. Enter the height measured to the top ridge of the bottom notch on the instrument. General Survey corrects this measured slope value to true vertical and adds the offset (\(Ho\)) to calculate true vertical to the trunnion axis. For details, see figure and tables in *Station setups – Overview*.
4. Tap Accept.
5. Enter the *Point 1 name*, and *Target height*.
 - If point 1 has known coordinates, the coordinates are displayed.
 - If point 1 does not have known coordinates, default coordinates are used. Select Options to change the default coordinates.
6. Tap Meas 1 to measure the first point.
7. Enter the *Point 2 name*, and *Target height*.
 - If point 1 has known coordinates, a point with known coordinates can be used for point 2.
 - If point 1 does not have known coordinates then a point with known coordinates can not be used at point 2.
 - If point 1 does not have known coordinates, the default coordinates are used. Select Options to change the default coordinates.
 - If point 1 and point 2 had known coordinates the computed refline azimuth is displayed, otherwise the default azimuth 0° is displayed.
8. Enter a *Refline azimuth*, if applicable.
9. Tap Meas 2 to measure the second point.
 - The instrument point coordinates are displayed.
10. Tap Store to complete the refline station establishment.
Once the Refline setup is stored, all subsequent points are stored in terms of the baseline as a station and offset.

If a line does not already exist, one is automatically created between the two points, using the naming scheme "<Point 1 name>-<Point 2 name>". You can enter the Start station and Station interval.

If the line between the two points does already exist, the existing station is used and cannot be modified.

Note – *In a refine station establishment, you can only use existing points that can be viewed as grid coordinates. This is because the refine calculation is a grid calculation. You can use 2D and 3D grid coordinates to define the baseline.*

For more information

Station setups – Overview

Scan station

Create a Scan station when capturing scans or panoramas using the Trimble SX10 scanning total station and the instrument is located at a non-coordinated point.

The software automatically creates a virtual backsight, Backsightxxxx (where xxxx is a unique suffix, for example, Backsight0001), using the current instrument orientation as the azimuth.

When the instrument is located at a point that has known coordinates, you should perform a standard station setup. When using a scan station, you can capture scans and panoramas only.

Setting up a scan station

1. From the main menu, select Measure / <Style name>/ Scan station.
2. Set the corrections associated with the instrument.
 - If the Corrections form does not appear, tap Options and then select the Show corrections on startup check box.
3. Enter the Instrument point name.
4. Tap Next.
 - The Scanning screen appears, showing the Scan station number and the number of scans or panoramas captured at this station at the top of the screen.
5. Capture the scan or panorama as usual.
6. If you move the instrument, in the Scanning or Panorama screen tap +Station to define the next scan station as required. Tap Next to return to the Scanning or Panorama screen.

Note –

- **Only scans captured at the current scan station are shown in the Scanning or Panorama screen.**
- **Scans captured at scan stations are shown at the center of the project area in the plan view of the 3D map.**
For more information

Station setups – Overview
Scanning with an SX10 scanning total station
Capturing a panorama with an SX10 scanning total station

Station setup plus, resection, and rounds options

There are up to four main settings that control the order in which the observations are taken, and how many observations are made during station setup plus, resection, and rounds:

- Face order
- Observation order
- Sets per point
- Number of rounds

Face order options

- \textit{F1 only} - observations are taken only on face 1
- \textit{F1... F2...} - all face 1 observations are taken to all points and then all face 2 observations are taken to all points
- \textit{F1/F2...} - face 1 and then face 2 observations are taken to the first point, face 1 and then face 2 observations are taken to the next point, and so on

Observation order options

- \textit{123. 123}
- \textit{123. 321}

When the \textit{Face order} is set to \textit{F1... F2...}:

- \textit{123. 123} - observations on face 2 are taken in the same order as the observations on face 1
- \textit{123. 321} - observations on face 2 are taken in the reverse order to the observations on face 1

When the \textit{Face order} is set to \textit{F1 only} or \textit{F1/F2}:

- \textit{123. 123} - each round of observations is taken in the same order
- \textit{123. 321} - every alternate round of observations is taken in the opposite order

Sets per point option

This option can be used to measure multiple sets of face 1 observations, or face 1 and face 2 observations to a point per round of observations.

If \textit{Face order} is set to collect F1 and F2 observations, the \textit{Sets per point} was set to 3, and the \textit{Number of rounds} was set to 1, then the total number of observations to each point would be; \(2 \times 3 \times 1 = 6\). Setting the \textit{Sets per point} option to a number greater than 1 enables you to collect more than one set of observations to a point with only one visit to that location.

This option is currently available only in rounds.
Note – Before using this option please make sure this data collection technique matches your QA/QC requirements.

Number of rounds option
This option controls the number of complete rounds of observations that are are taken to each point.

Skipping observations
When using Automate rounds you can configure the software to automatically skip obstructed foresight targets.
If the instrument cannot measure the point and Skip obstructed foresights is enabled, it skips that point and moves onto the next point in the rounds list.
If the instrument cannot measure the point and Skip obstructed foresights is disabled, a message appears after 60 seconds to indicate that the prism is obstructed.
The General Survey software continues to try to measure to the target until instructed to skip the point. To do this, tap Ok for the obstructed prism message, tap Pause and then tap Skip.
When the General Survey software reaches the end of a rounds list in which points have been skipped, the following message appears:
Observe skipped points?
Tap Yes to observe the points that were skipped during that round. The observations can be skipped again if required. Tap No to end the round.
If a point is skipped in one round, all subsequent rounds continue to prompt for observations to that point.
When one observation from a pair of face 1 and face 2 observations has been skipped, the unused observation is automatically deleted by the General Survey software. Deleted observations are stored in the General Survey database and can be undeleted. Undeleted observations can be processed in the office software, but are not automatically used to recompute Mean Turned Angle (MTA) records in the General Survey software.
Backsight observations cannot be skipped using the Skip obstructed foresights option.

Automate rounds
The Automate rounds option is available for Trimble servo total stations. When you select Automate rounds, the instrument automatically completes all rounds after the rounds list has been built.
A 3-second delay between automated rounds enables you to check the standard deviations before the next round starts automatically.
If a target has been blocked, the instrument tries to measure the point for up to 60 seconds. After 60 seconds has elapsed it skips the observation and moves to the next point in the rounds list.
If you tap + Round after the instrument has completed the required number of rounds, the instrument performs one more round of observations. If you want the instrument to perform more than one extra round, enter the total number of required rounds before you tap + Round.
For example, to measure three rounds automatically, and then measure another three rounds:
1. Enter 3 in the Number of rounds field.
2. Once the instrument has measured 3 rounds, enter 6 in the Number of rounds field.
3. Tap + Round. The instrument measures the second group of 3 rounds.

 Note – Manually observed targets are automatically paused.

Monitoring

When Automated rounds is enabled, monitoring controls are also enabled. Enter a value for the time delay between automated rounds.

With a Trimble servo total stations, you can automatically measure to non-active targets. To do this, select the Auto-measure passive targets check box.

Note – If you select the Auto-measure passive targets check box, manually observed targets are automatically measured rather than paused. If you clear this check box, the software prompts you to aim the instrument to non-active targets.

Conventional instrument corrections

You can set the corrections associated with conventional observations.

Note – If you intend to perform a network adjustment in the Trimble Business Center software using data from a conventional survey, make sure that you enter a pressure, temperature and, curvature and refraction correction.

Use the PPM (Parts Per Million) field to specify a PPM correction to be applied to electronic distance measurements. Key in the PPM correction, or enter the pressure and temperature of the surrounding environment and let the General Survey software compute the correction.

Typical pressure ranges are between 500 mbar - 1200 mbar, but when you work in an area with over-pressure (for example, a tunnel), larger pressures up to 3500 mbar are possible.

If you are using a Trimble total station that has an internal pressure sensor, the pressure field is set automatically from the sensor in the instrument. To disable this, tap the advanced pop-up arrow and then clear the From instrument check box.

Use the **Curvature** and **Refraction** fields to control curvature and refraction corrections. The earth curvature and refraction corrections are applied to vertical angle observations and therefore have an impact on computed vertical distance values. They also affect the horizontal distance values to a very small extent.

The earth curvature and refraction corrections can be applied independently using the options provided. The earth curvature correction is the most significant correction with a magnitude of approximately 16” per km measured distance (subtracted from the zenith vertical angle).

The magnitude of the refraction correction is affected by the refraction coefficient, which is an estimate of the change in air density along the light path from the instrument to the target. Since this change in air density is affected by factors such as temperature, ground conditions, and the height of the light path over ground, it is very difficult to determine exactly which refraction coefficient to use. If you use typical refraction coefficients such as 0.13, 0.142, or 0.2, the refraction correction results in a correction in the opposite direction to the earth curvature correction with a magnitude of approximately one-seventh of the earth curvature correction.
Note –

- The DC file format only supports a curvature and refraction correction that are both off or both on. When they are both on, they have a coefficient of 0.142 or 0.2. When settings other than these are used in the General Survey software, the settings exported to the DC file will be a best match.
- Do not set corrections in both devices. To set them in the General Survey software, make sure the instrument settings are null.

For some instruments, the General Survey software automatically checks to see if various corrections (PPM, prism constant, and curvature and refraction) are being applied correctly. If it finds that the corrections are being applied twice, a warning message appears.

In the following table, the * symbol in a field indicates that the correction at the top of that column is applied. The *' symbol applies only to computed coordinates when a station setup has been defined.

<table>
<thead>
<tr>
<th>Displayed/Stored data</th>
<th>Corrections applied</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C/R PPM PC SL Orient Inst</td>
</tr>
<tr>
<td>Status line</td>
<td>- - - - - - - - - - -</td>
</tr>
<tr>
<td>HA VA SD (raw)</td>
<td>- - - - - - - - - - -</td>
</tr>
<tr>
<td>HA VA SD</td>
<td>* * * - - - - - - - *</td>
</tr>
<tr>
<td>Az VA SD</td>
<td>* * * - * - - - - - *</td>
</tr>
<tr>
<td>Az HD VD</td>
<td>* * * - * * * * * *</td>
</tr>
<tr>
<td>HA HD VD</td>
<td>* * * - * * * * *</td>
</tr>
<tr>
<td>Grid</td>
<td>* * * * * * * * *</td>
</tr>
<tr>
<td>delta Grid</td>
<td>* * * * * * * * *</td>
</tr>
<tr>
<td>Station and offset</td>
<td>* * * * * * * * *</td>
</tr>
<tr>
<td>DC file (observations)</td>
<td>- - - - - - - - - *</td>
</tr>
<tr>
<td>DC file (reduced coordinates)</td>
<td>* * * * * * * * *</td>
</tr>
<tr>
<td>JobXML (observations)</td>
<td>- - - - - - - - - *</td>
</tr>
<tr>
<td>JobXML (reduced coordinates)</td>
<td>* * * * * * * * *</td>
</tr>
<tr>
<td>Survey Basic</td>
<td>* * * * * * * * *</td>
</tr>
</tbody>
</table>

The following table explains the corrections used above.
<table>
<thead>
<tr>
<th>Correction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C/R</td>
<td>Curvature and/or Refraction correction.</td>
</tr>
<tr>
<td>PPM</td>
<td>Atmospheric parts per million (PPM) correction. PPM is calculated from temperature and pressure.</td>
</tr>
<tr>
<td>PC</td>
<td>Prism constant correction.</td>
</tr>
<tr>
<td>SL</td>
<td>Sea level (ellipsoid) correction. This correction is applied only if a fully defined coordinate system definition is being used; the correction is not applied in the Scale factor only definition.</td>
</tr>
<tr>
<td>Orient</td>
<td>Orientation correction.</td>
</tr>
<tr>
<td>Inst ht</td>
<td>Instrument height correction.</td>
</tr>
<tr>
<td>Tar ht</td>
<td>Target height correction.</td>
</tr>
<tr>
<td>Proj Cor</td>
<td>Projection correction. This includes the application of a scale factor specified in the Scale factor only definition.</td>
</tr>
<tr>
<td>Stn SF</td>
<td>Station setup scale factor. In any station setup, a scale factor for this setup can be specified or computed. This scale factor is applied in the reduction of all observations from this station setup.</td>
</tr>
<tr>
<td>NA</td>
<td>Neighborhood adjustment. In a station setup defined using station setup plus or resection, a neighborhood adjustment can be applied. The neighborhood adjustment is computed based on the observed residuals to the control points used during the station setup. The adjustment is applied, using the specified exponent value, in the reduction of all observations from this station setup.</td>
</tr>
<tr>
<td>POC</td>
<td>Prism offset correction. This is only applied when using a Trimble VX/S Series 360° prism, R10 360° prism, MultiTrack target, or Active Track 360 target.</td>
</tr>
</tbody>
</table>

Target details

You can configure the details of the target during a conventional survey. For information on tracking specific target types, see [Target tracking](#).

Changing the target

When connected to a conventional instrument the Target icon appears in the status bar. The number next to the target icon indicates the target currently in use. To alternate between targets or to edit the target height and the prism constant, tap the target icon or press Ctrl + P. To select the target to use, tap the appropriate target in the pop-up list. You can create up to nine non-DR targets. By default, the targets are named Target 1 to Target 9. If you edit the display name of the target, the number of the target is appended to the display name.

Tip - To change to a target, select the target name. To edit entries in the *Target* form, select the target height or prism constant.
Target settings

When using Trimble prisms, select the **Prism type** to automatically define the prism constant. When using non-Trimble prisms, select **Custom** to manually enter the prism constant.

Ensure that the correct prism type and mode is selected in the target form. This will ensure that the appropriate correction values are applied to the slope distance and vertical angle for geocentric offset and prism constant.

The correction is only significant when observing step vertical angles.

When connected to a DR instrument, **Target DR** is used to define the DR target height and prism constant. To enable DR, select **Target DR**. To disable DR and return the instrument to its last state, select **target 1 - 9**.

When measuring to the bottom notch on a Trimble prism base, tap the advanced pop-up arrow () and then select **Bottom notch**. General Survey corrects this measured slope value to true vertical and adds the offset 0.158 m (0.518 ft) to calculate the true vertical height to the center of the prism.

Note – **If you select Bottom notch, the minimum slope distance (Hm) that you can enter is 0.300 meters. This is approximately the minimum slope distance that can be physically measured. If the minimum is not low enough, you must measure to the top mark.**

For information on configuring an integrated survey rover survey rod see, **Integrated surveys**.

For details, see the following figure and table.

![Diagram showing target settings](image)

<table>
<thead>
<tr>
<th>0.158m</th>
<th>Offset from bottom notch to center of prism.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hm</td>
<td>Measured slope distance.</td>
</tr>
<tr>
<td>Hc</td>
<td>Hm corrected from slope to true vertical.</td>
</tr>
<tr>
<td>HT</td>
<td>True vertical target height. Hc + 0.158m.</td>
</tr>
</tbody>
</table>
Managing targets

Adding a new target
1. Tap the target icon in the status bar and then tap the height or prism constant for Target 1.
2. In the Target 1 screen, tap Add to create Target 2.
3. Enter the details for Target 2 and then tap Accept.
4. Target 2 now becomes the active target.

Deleting a target from the list
1. Tap the target icon in the status bar and then tap the height or prism constant.
2. In the Target screen, tap Delete. The Target is removed from the list.

Note – You cannot delete Target 1 or Target DR.

Editing a target height
1. Tap the target icon in the status bar.
2. Tap the target height for the target you want to edit.
3. Edit the target details and then tap Accept.

To edit target heights of observations already stored to the job, do one of the following:
- For a single observation or multiple observations using the same or different targets, use Point manager.
- For a single target record, and subsequently a group of observations that use that target, use Review job.

For more information

See also:

Prism constant
Target tracking
Target controls

Prism constant

The prism constant (distance offset) must be set for each prism that is used as a target in a conventional survey.

To edit a prism constant:
1. Tap the target icon in the status bar.
2. Tap the prism constant for the target you want to edit.
3. Edit the prism constant details and then tap Accept.
Enter a negative value if the prism constant is to be subtracted from measured distances. Enter the Prism constant in millimeters (mm).

When using a Trimble total station, all corrections are applied in General Survey. For some non-Trimble instruments, the General Survey software checks to see if a prism constant has been applied by the instrument and the software. When you select Station setup, status line messages show what has or has not been checked.

If the General Survey software cannot check the setting on the conventional instrument, do one of the following:

- If there is a prism constant set on the instrument, make sure that the prism constant in the General Survey software is set to 0.000.
- If there is a prism constant set in the General Survey software, make sure that the prism constant in the instrument is set to 0.000.

To review or edit the prism constant on previously stored observations, tap Favorites / Review job or tap Jobs / Point manager. For more information, see Point manager.

GDM CU programs

General Survey offers similar functionality to the GDM Control Unit. To access GDM CU programs, tap the instrument icon to access instrument functions and then enter the GDM CU program number.

The following table shows where to find specific GDM CU programs within General Survey.

<table>
<thead>
<tr>
<th>GDM CU program</th>
<th>General Survey</th>
<th>Instrument functions number</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 - Station setup</td>
<td>Measure / Station setup</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Measure / Station setup plus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Measure / Resection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Measure / Refline</td>
<td></td>
</tr>
<tr>
<td>21 - Z/IZ</td>
<td>Measure / Station elevation</td>
<td>21</td>
</tr>
<tr>
<td>22 - Angle measurement</td>
<td>Measure / Measure rounds</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Measure / Measure topo</td>
<td>30</td>
</tr>
<tr>
<td>GDM CU program</td>
<td>General Survey</td>
<td>Instrument functions number</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>23 - Set Out</td>
<td>Stakeout / Points</td>
<td>set out points with known coordinates. Points can be defined via Key in / Points or obtained from a linked CSV, TXT or General Survey JOB file.</td>
</tr>
<tr>
<td>24 - Refline</td>
<td>Stakeout / Lines</td>
<td>measure or set out relative to a line. The line can be defined through Key in / Line or imported to the General Survey job.</td>
</tr>
<tr>
<td>25 - Area Calculation</td>
<td>COGO / Compute area</td>
<td>calculate an area.</td>
</tr>
<tr>
<td>26 - Distob</td>
<td>COGO / Compute inverse</td>
<td>calculate an inverse between two points.</td>
</tr>
<tr>
<td>27 - Moving Coordinates Forward</td>
<td>the General Survey software stores raw data and automatically calculates point coordinates. There is no specific program required in the General Survey software to move coordinates forward. Instead, select Station setup plus or Measure rounds.</td>
<td></td>
</tr>
<tr>
<td>28 - Obstructed Point</td>
<td>Measure / Measure topo and set the method to Dual-prism offset.</td>
<td></td>
</tr>
<tr>
<td>29 - Roadline</td>
<td>Stakeout / Alignments</td>
<td>measure or set out relative to an alignment.</td>
</tr>
<tr>
<td>30 - Measure Coordinates</td>
<td>the General Survey software stores raw data and automatically calculates point coordinates. There is no specific program required in the General Survey software to measure coordinates. Instead, use Measure topo. Points can be exported to a CSV or TXT file, through Jobs / Import/Export / Send data, for use as a control file. To access the control file from another job, select the CSV, TXT, or JOB file as a linked file through Jobs / Properties of job.</td>
<td></td>
</tr>
<tr>
<td>32 - Angle measurement plus</td>
<td>Measure / Measure rounds</td>
<td>measure one or more Face 1 (CI) and Face 2 (CII) measurements.</td>
</tr>
<tr>
<td></td>
<td>Measure / Measure rounds / Options</td>
<td>configure the number of rounds to be measured; select automatic measurements; set the observation order; measure distances on Face 2(CII); define a time interval between rounds (automatic measurements only).</td>
</tr>
<tr>
<td>33 - Robotic</td>
<td>Not supported</td>
<td></td>
</tr>
<tr>
<td>GDM CU program</td>
<td>General Survey</td>
<td>Instrument functions number</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Lite</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>39 - Roadline 3D</td>
<td>Stakeout / Alignments</td>
<td>39</td>
</tr>
<tr>
<td>43 - Enter coordinates</td>
<td>Key in / Points</td>
<td>43</td>
</tr>
<tr>
<td>45 - Pcode</td>
<td>the Trimble Access menu tap Feature libraries</td>
<td>45</td>
</tr>
<tr>
<td>60 - Athletics</td>
<td>Not Supported</td>
<td></td>
</tr>
<tr>
<td>61 - COGO</td>
<td>COGO / Compute point</td>
<td>61</td>
</tr>
<tr>
<td>65 - Direct Reflex</td>
<td>COGO / Compute point</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>Measure / Measure topo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Measure / Surface scan</td>
<td></td>
</tr>
<tr>
<td>66 - Monitoring</td>
<td>Measure / Measure rounds</td>
<td>66</td>
</tr>
<tr>
<td>Menu 2 (View/Edit)</td>
<td>Jobs / Review job</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Favorites / Review</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Favorites / Point manager</td>
<td></td>
</tr>
<tr>
<td>F 6 (Change target height)</td>
<td>the target icon on the status bar</td>
<td></td>
</tr>
<tr>
<td>F 33 (Change prism)</td>
<td>quickly change the target details for new observations.</td>
<td></td>
</tr>
</tbody>
</table>
Advanced Geodetic support

To enable the following options for Advanced Geodetic support:
When creating a new job, tap Job / New job / Cogo settings; for an existing job, tap Job / Properties of job / Cogo settings.

- Station setup scale factor
- Helmert transformation for resection

For more information, see Neighborhood adjustment.

Station setup scale factor

When you turn on Advanced Geodetic support, you can apply an additional scale factor to every conventional station setup. All measured horizontal distances are adjusted by this scale factor. To configure the scale factor settings, select Options during a station setup, station setup plus, or resection.

This station setup scale factor can be Free (computed) or Fixed. If you have chosen to compute a station setup scale factor, you must observe at least one distance to a backsight during the station setup so that a scale factor can be calculated.

Note – The Station setup scale factor is not applied to point clouds captured using a Trimble SX10 scanning total station.
Helmert transformation for resection

When you turn on Advanced Geodetic support, Resection has an additional computation method called Helmert transformation. To perform a resection using a Helmert transformation, select Options during a Resection, and then set the Resection type to Helmert.

Note – The standard resection type is the same as the resection method used when Advanced Geodetics is turned off.

For a Helmert transformation, you must measure distances to the backsight points. The resection calculation will not use a backsight point without a distance measurement.

To create a local Helmert transformation, see Local transformations.

For more information on Helmert transformations, refer to the Trimble Access Software Resection Computations PDF.

Start the survey

To begin surveying, select the required survey method from Measure.

Note – If there is only one survey style, it is automatically selected when you start a survey. Otherwise, select a style from the list that appears.

End the survey

1. From the main menu, select Measure / End conventional survey.
2. Tap Yes to confirm.
3. Turn off the controller.

WARNING - The current station setup is lost when you select End conventional survey.

If a survey is running, end it before editing the current survey style or changing survey styles. You must also end the survey before accessing job functions such as copying. For more information, see Managing jobs.
Conventional Survey – Measure

Measuring points in a conventional survey

The Measure screen lets you record points measured using data from the connected conventional survey instrument. For information on setting up the instrument, see Conventional survey – Getting started.

To access the Measure screen, from the main menu tap Measure. The following measurements can be performed from the Measure screen:

<table>
<thead>
<tr>
<th>Select...</th>
<th>To...</th>
<th>For more information, see...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure topo</td>
<td>Measure a topographic point</td>
<td>Measure topo</td>
</tr>
<tr>
<td>Measure codes or Measure topo</td>
<td>Measure points with feature codes</td>
<td>Measure codes or Measure topo</td>
</tr>
<tr>
<td>Measure rounds</td>
<td>Measure multiple sets of observations</td>
<td>Measure rounds</td>
</tr>
<tr>
<td>Measure points on a plane</td>
<td>Define a plane and then measure points relative to the plane</td>
<td>Measure points on a plane</td>
</tr>
<tr>
<td>Measure 3D axes</td>
<td>Measure a point relative to a 3D axis</td>
<td>Measure 3D axes</td>
</tr>
<tr>
<td>Continuous topo</td>
<td>Measure a line of points at a fixed interval</td>
<td>Continuous topo</td>
</tr>
</tbody>
</table>

Scanning

Digitally capture the shape of physical objects you have defined using a laser of light from a total station that has Trimble VISION technology

Scanning with an SX10 scanning total station or Scanning with a VX or S Series total station

Panorama

Capture multiple images in a defined area using Trimble VISION technology

Capturing a panorama with an SX10 scanning total station or Capturing a panorama with a VX or S Series total station

Surface scan

Define a surface and then scan points on the surface

Surface scanning with a VX or S Series total station
From the **Measure topo** screen you can perform the following calculations or measurements:

<table>
<thead>
<tr>
<th>Select the method...</th>
<th>To...</th>
<th>For more information, see...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance offset or the appropriate angle offset method</td>
<td>Measure an inaccessible point</td>
<td>Distance offset or Angle offset, H.Angle offset, and V.Angle offset</td>
</tr>
<tr>
<td>Averaged observations</td>
<td>Measure a point using a predefined number of observations</td>
<td>Averaged observations</td>
</tr>
<tr>
<td>Dual-prism offset</td>
<td>Measure a point that cannot be observed directly with a pole in plumb position</td>
<td>Dual-prism offset</td>
</tr>
<tr>
<td>Circular object</td>
<td>Measure to a cylindrical object, and calculate the center point and radius of the object such as a pillar or water tank</td>
<td>Circular object</td>
</tr>
<tr>
<td>Remote object</td>
<td>Calculate the height and/or width of a remote object if the instrument cannot easily measure a distance directly to the object</td>
<td>Remote object</td>
</tr>
<tr>
<td>Tap the Check softkey (or press Ctrl + K from any screen)</td>
<td>Measure a check class point</td>
<td>Tap the Check softkey</td>
</tr>
</tbody>
</table>

The General Survey software also enables you to:

- **Measure a point on two faces.**
- **Measure and automatically store a construction point.** For more information, see **Fast fix.**
- **Capture panoramas when measuring points** if the controller is connected to a Trimble V10 imaging rover.

Tip - In **Point name** fields there is a **Find** softkey that lets you search for the next available point name. For example, if your job contains points numbered in the 1000s, 2000s and 3000s, and you want to find the next available point name after 1000:

1. In the **Point name** field, tap **Find**. The **Find next free point name** screen appears.
2. Enter the point name you want to start searching from (in this example, 1000) and tap **Enter**.

The General Survey software searches for the next available point name after 1000 and inserts it in the **Point name** field.
Measuring topo points in a conventional survey

To measure a topographic point using the General Survey software and a conventional instrument:

1. From the Measure menu, select Measure topo.
2. Enter a value in the Point name field.
3. If necessary, enter a feature code in the Code field.
 If the code has attributes, see Using feature codes with predefined attributes.
4. If you have enabled a measured point to be added to a CSV file, select the Add to CSV file option. The point will be stored in the displayed file name. To enable adding a file, see Add to CSV file.
5. In the Method field, select a measurement method.
6. Enter a value in the Target height field and then tap Measure.
 When measuring to the bottom notch on a Trimble prism base, tap the advanced pop-up arrow (▼) and then select Bottom notch.
 If you selected the View before storage check box in the survey style, the measurement information appears on the screen. If necessary, edit the target height and code. Tap the view display button on the left of the measurement information to change the display and then do one of the following:
 - To store the point, tap Store.
 - Turn the instrument to the next point and then tap Read. The last point is stored and a measurement is made to the next point.

If you did not select the View before storage check box, the point is stored automatically and the point name increments (based on the Auto point step size setting). The General Survey software stores the raw observations (HA, VA, and SD).

Notes

- If you selected the Auto average option in the survey style, and an observation to a duplicate point is within the specified duplicate point tolerances, the observation and the computed average position (using all the available point positions), are automatically stored.
- Two angles only observations from two different known points can be 'averaged' to compute the coordinates of the intersection point. To average the observations, they must be stored with the same point name. When the Duplicate point: Out of tolerance screen appears, select Average. Alternatively, average the observations using Compute average.
- Two averaging methods are supported.
 - Weighted
 - Unweighted
 You can select the averaging method in the Cogo settings screen.

To change the settings for the current survey, tap Options. You cannot change the current survey style or the system settings.

If you are using a servo or robotic instrument to measure a known (coordinated) point, tap Turn. Alternatively, with a servo instrument, set the Servo auto turn field in the survey style to HA & VA, or HA only to automatically turn the instrument to the point.
Tips

- You can tap Enter while measuring an Averaged observations to accept the measurement before the required number of observations has been completed.
- You can tap Enter while measuring a Direct Reflex (DR) point with a defined standard deviation to accept the measurement before the standard deviation has been satisfied.
- Instead of going to the Measure screen, you can access the Measure topo screen from the following:
 - From the Favorites menu, select Measure points.
 - From the Map, select Measure (only available when nothing in the map is selected).
- If you are measuring topo points with feature codes, you may find Measure codes faster and easier to use than Measure topo.
- You can use the Trimble V10 imaging rover to capture panoramas when measuring a point during a conventional survey.

If you are using a Leica TPS1100 instrument with Measure topo, you can initiate the measurement on the instrument and then store the measurement in the General Survey software. For more information on how to do this and on how to configure the Leica TPS1100 instrument, see Configuring a Leica TPS1100 instrument to record data to General Survey.

Measuring a point in two faces

To start a conventional survey in the General Survey software, you must first perform a Station setup using one of the following methods:

- Station setup
- Station setup plus
- Resection

You can observe points using face 1 (direct) and face 2 (reverse) measurements during a station setup and during Measure rounds or Measure topo.

Consider the station setup and the new point measurement method together and choose which to use according to how you want to capture and store the data.

If you only want to use a single backsight (measured on one or both faces), and measure some topo points (on one or both faces), then use station setup and Measure topo. When you measure on both faces, remember to also measure the backsight on face 2 in Measure topo. Otherwise, all foresights on face 2 will be oriented using the face 1 backsight observation.

If you want to measure multiple backsights, measure multiple rounds, or obtain better quality control of your observations, see below for more information on different station setup and new point measurement methods in General Survey.

Use Station setup plus to:

- measure a single backsight point or multiple backsight points
- measure backsight and foresight points
- pair the face 1 and face 2 observations and create MTA records
- measure face 1 only observations and create MTA records
• measure one or more rounds of observations
• review the quality of the observations and remove bad observations

Use **Resection** to:
• coordinate the instrument point
• measure multiple backsight points
• measure backsight and foresight points
• pair the face 1 and face 2 observations and create MTA records
• measure face 1 only observations and create MTA records
• measure one or more rounds of observations
• review the quality of the observations and remove bad observations

Use **Station setup** to:
• perform a station setup with a single backsight measurement on one face only

Note –
• *When measuring points on both faces, use Measure topo to observe the backsight on the other face. Alternatively, use Measure rounds and include the observation to the backsight point in the rounds.*
• *When you make topo observations after a Station setup, and you subsequently select Measure rounds, you must reobserve the backsight to include it in the rounds, generate an MTA to the backsight, and calculate turned angles from the backsight MTA for all foresight points.*
• *MTAs are not created during Station setup, but are created later if you make further observations to the backsight using Measure topo or Measure rounds.*

Use **Measure rounds** (after performing a station setup) to:
• measure one or more foresight points
• pair the face 1 and face 2 observations and create MTA records
• measure face 1 only observations and create MTA records
• measure one or more sets of observations per point in one round
• measure one or more rounds of observations
• review the standard deviations of the observations and remove bad observations

Note –
• *Standard deviations are only available after the second round of observations.*
• *If the station setup has a single backsight (from Station setup or Station setup plus), you can choose whether or not to include the backsight point in the rounds list.*
• *If the station setup has multiple backsights (from Station setup plus or Resection), the backsight points are not included in the rounds list.*
• *If you do not measure the backsight on face 2, then the horizontal angle face 2 measurements that were observed using Measure rounds will not be used when calculating the MTAs.*
• *When you use Measure rounds after a station setup with a single backsight, and you do not include the backsight point in the rounds list, all turned angles are calculated using the backsight observation(s) made during the station setup.*
Use **Measure topo** (after performing a station setup) to:

- measure face 1 or face 2 observations and create MTA records

Note – You can measure multiple rounds using Measure topo. However, Trimble recommends Measure rounds as a more suitable method to use.

Additional notes about MTA records

- When you use Station setup plus or Resection, all observations are stored when the station setup is complete. When you use Measure rounds, the observations are stored at the end of each round. In all three options, the MTAs are stored at the end.
- When you use Measure topo, MTAs are calculated and stored on the fly.
- You can create MTAs during a station setup using Station setup plus and Resection, and also after a station setup using Measure rounds or Measure topo. When you measure the same point(s) using Measure rounds or Measure topo after Station setup plus and Resection, the General Survey software may produce two MTAs for the one point. When more than one MTA exists for the same point in one station setup, the General Survey software always uses the first MTA. To avoid having two MTAs for the same point, do not use both methods to measure a point.
- Once an MTA record is written to the job database, you cannot change it.
- You can delete a face 1 and face 2 observation but the MTA records are not updated.
- You cannot delete MTA records in review.
- In Station setup plus, Resection, or Measure rounds, when you use the F1... F2 or F1/F2... face order, MTAs that are created pair face 1 and face 2 observations.
- In Station setup plus, Resection, or Measure rounds, when you use the F1 only face order, MTAs that are created group face 1 observations.
- In Measure topo, MTAs that are created group together all observations for the same point.

Continuous topo – conventional

Use the **Continuous topo** function to measure points continuously. A point is stored when one of the following conditions occurs:

- a predefined time has elapsed
- a predefined distance has been exceeded
- both predefined time and/or distance settings have been met
- a predefined stop time and distance settings have been met

Measuring continuous topo points

1. From the main menu, select **Measure / Continuous topo**.
2. Enter a value in the **Start point name** field. This increments automatically.
3. Enter a value in the **Target height** field.
4. In the **Method** field, select **Fixed distance, Fixed time, Time and distance**, or **Time or Distance**.
5. Enter a value in the *Distance* field and/or the *Time interval* field, depending on which method you are using.
6. Tap *Start* to start recording data and then move along the feature to be surveyed.
7. To stop measuring continuous points, tap *End.*

Tip - To store a position before the predefined conditions have been met, tap *Store.*

Synchronous and non-synchronous angles and distances

Continuous topo with a Trimble total station uses only synchronous angles and distances. When using any other instrument with continuous topo, for example a Trimble 5600 total station, the General Survey software uses the latest angles and the latest distance when it stores a position. When a synchronized angle and distance is not available (within approximately 1 second) a newer angle may be paired with an older distance. To minimize any potential position error, you may need to slow the prism movement during Continuous topo.

Measuring continuous topo points using the stop and go method

1. From the main menu, select *Measure / Continuous topo.*
2. Enter a value in the *Start point name* field. This increments automatically.
3. Enter a value in the *Target height* field.
4. In the *Method* field select *Stop and go.*
5. Enter a value in the *Stop time* field for the period of time the target must be stationary before the instrument starts to measure the point. The user is deemed to be stationary when their velocity is less than 5 cm/sec.
6. Enter a value in the *Distance* field for the minimum distance between points.

Note – When connected to:

- *an instrument that has a tracklight that has been enabled, the tracklight will be disabled for 2 seconds when the measured point has been stored.*
- *a FOCUS 30/35 instrument with laser blinking enabled, laser blinking is temporarily disabled when using Continuous topo.*

Using an echo sounder to store depths

You can use continuous topo to store depths with measured points.

To configure the survey style:
1. From the Trimble Access menu, tap *Settings / Survey styles / <Style name>.*
2. Tap *Echo sounder.*
3. Select an *instrument* from the *Type* field.
4. Configure the *Controller port*:
 - *If you set the Controller port to Bluetooth, you must configure the echo sounder Bluetooth settings.*
If you set the Controller port to COM1 or COM2, you must configure the port settings.

5. If required, enter the Latency and Draft and then tap Accept.

The latency caters for echo sounders where the depth is received by the controller after the position. General Survey software uses the latency to match and store the depth when it is received with continuous topo points that were saved previously.

6. Tap Accept and then tap Store to save the changes.

To store continuous topo points with depths, follow the steps above to Measure continuous topo points, while connected to the echo sounder with a correctly configured survey style.

Note –

- During the survey, you can disable storing depths with continuous topo points. To do this, tap Options and then clear the Use echo sounder check box. You can also configure Latency and Draft from Options.

- The Draft affects how the target height is measured. If the Draft is 0.00, the target height is the distance from the transducer to the prism. If a Draft is specified, the target height is the distance from the transducer to the prism, minus the draft.

When measuring continuous topo points with an echo sounder enabled, a depth is displayed during continuous topo, and also in the map. When a latency has been configured the continuous topo points are initially stored without depths and later updated. The depth that is displayed during continuous topo when a latency has been configured, is an indicator that depths are being received. The depths that are displayed may not be the depths that are stored with the point names that are displayed at the same time.

CAUTION - There are many factors involved in correctly pairing positions with accurate depths. These include sound velocity - which varies with water temperature and salinity, hardware processing time, and the speed at which the boat is moving. Make sure that you use the appropriate techniques to achieve the required results.

The elevations of continuous topo points stored in General Survey software do not have the depth applied to them. Use Export custom format files to generate reports with depths applied.

The following sample reports are available for download from Trimble Access Downloads (www.trimble.com/support_trl.aspx?Nav=Collection-62098):

- [Survey report.xsl]
- [Comma Delimited with elevation and depths.xsl]
- [Comma Delimited with depth applied.xsl]

Note – If a Sonarmite instrument is connected, General Survey software configures it to use the correct output format and mode. For an instrument from another manufacturer, you must manually configure it to use the correct output format. For more information, see Echo sounder instruments.

Angles and distance

In a conventional survey, use this measurement method to measure a point by angles and a distance.
To measure an angle offset when using the *Angles and distance* measurement method, tap *Dist* to measure and fix the horizontal distance, then turn the instrument. The horizontal distance will remain fixed but the horizontal and vertical angles will change.

Note – The distance reverts to ? if target test is enabled and the instrument is turned more than 30 cm from the target.

Angles only and H.Angle only

In a conventional survey, use this measurement method to measure a point by both a horizontal and vertical angle or by a horizontal angle only.

Averaged observations

Note – The averaged observations method is not available when you are connected to a Trimble SX10 scanning total station.

In a conventional survey, use the averaged observations method to:

- increase the measurement precision with a predefined number of observations
- view the associated measurement standard deviations

To measure a point using the averaged observations method:

1. From the *Measure* menu, select *Measure topo*.
2. In the *Point name* field, enter the name of the point.
3. In the *Code* field, enter a feature code (optional).
4. Select *Averaged observations* as the method.
5. Sight the target and tap *Measure*.

 While the instrument is carrying out the measurements, standard deviations are displayed for the horizontal (HA) and vertical (VA) angles, and the slope distance (SD).
6. View the resulting observation data, and the associated standard deviations, in the *Store* screen.

 If acceptable, tap *Store*.

Note – Use the options available in the *Measure topo* screen to change the number of observations taken by the instrument using averaged observations.

Angle offset, H.Angle offset, and V.Angle offset

In a conventional survey, there are three angle offset methods that you can use to observe a point that is inaccessible; Angle offset, H.Angle offset, and V.Angle offset.

The *Angle offset* method holds the horizontal distance from the first observation, and combines this with the horizontal angle and vertical angle from the second observation to create an observation to the offset location.
The V.Angle offset method holds the horizontal distance and horizontal angle from the first observation, and combines this with the vertical angle from the second observation to create an observation to the offset location.

The H.Angle offset method holds the slope distance and vertical angle from the first observation, and combines this with the horizontal angle from the second observation to create an observation to the offset location.

All raw observables from the first and second observations are stored internally in the job file and are available in Custom ASCII Export.

Measuring a point using an angle offset method

1. From the Measure menu, select Measure topo.
2. In the Point name field, enter the name of the point.
3. In the Code field, enter a feature code (optional).
4. In the Method field, select Angle offset, H. Angle Offset, or V. Angle Offset.
 - When using the H.Angle offset measurement method, the target height from the first observation is applied to the horizontal angle offset observation.
 - When using Angle offset or V.Angle offset measurement methods you do not need to enter the Target height. The offset measurements are to the offset location and the target height is not used in any computations. To ensure that a target height is not applied to the observation, a target height of 0 (zero) is automatically stored to the General Survey software database.
5. Place the target beside the object to be measured, sight the target and then tap Measure. The first observation is displayed.
 - **Tip:** When using Autolock technology and measuring offset points, select the Autolock off for offsets check box. When enabled, Autolock technology is automatically disabled for the offset measurement and then re-enabled after the measurement.
6. Turn to the offset location and then tap Measure. The two observations are combined into one:
 - if you selected the View before storage check box in the survey style, the measurement values appear. Tap Store to store the point.
 - if you did not select the View before storage check box, the point is stored automatically.

Note – The observation is stored in the database as raw HA, VA, and SD records.

Distance offset

In a conventional survey, use this observation method when a point is inaccessible but a horizontal distance from the target point to the object can be measured.

Distance offset allows you to offset in one, two, or three distances in one step.
Measuring a point using the distance offset method

1. From the Measure menu, select Measure topo.
2. In the Point name field, enter the name of the point.
3. In the Code field, enter a feature code (optional).
4. In the Method field, select Distance offset.
5. In the Target height field, enter the height of the target.
6. Tap Options and then set the Offset & Stakeout directions perspective.
 Tip - From the Options screen you can also enter values in the Custom L/R offset 1 and Custom L/R offset 2 fields to pre-configure two values for the L/R offset.
7. Enter the L/R offset (left or right offset) from the target to the object, if applicable.
 If custom offsets were preconfigured, tap the pop-up arrow to select the offset.
 To set all three offset values to 0, tap the pop-up menu and then tap Set offsets to 0. If all three fields are set to 0 the measurement will be treated as an Angles and distance measurement. The Set offsets to 0 option is also available from the In/Out offset and V.Dist offset fields.
8. Enter the In/Out offset from the target to the object, if applicable.
9. Enter the V.Dist offset from the target to the object, if applicable.
 The following figure shows an example where point 5 is measured with the Offset & Stakeout directions set to Instrument perspective:
 - offset to the left (2) of the target (3)
 - offset out (4) from the instrument station (1)
 - offset vertically (6)
10. Tap Measure.
 If you selected the View before storage check box in the survey style, the observation adjusted for the offset distance appears. Tap Store to store the point.
 If you did not select the View before storage check box, the point is stored automatically.
 The General Survey software stores the adjusted horizontal angle, vertical angle, and slope distance in the point record, as well as an offset record with the offset measurement details.
Offset and stakeout directions

The left and right directions used in Distance offset depend on the Offset & Stakeout directions setting. You can configure this setting in the survey style and also from Options.

When looking from the instrument to the object, an object that is offset to the left when the Offset & Stakeout directions are set to Instrument perspective is to the left.

When the Offset & Stakeout directions is set to Target perspective, the object is to the right.

When the Offset & Stakeout directions are set to Automatic, the offset and stakeout directions are with respect to the instrument perspective in a Servo survey, and to the target perspective in a Robotic survey.

The measurements are editable in Review job and are always displayed in the perspective in which they were observed. The perspective cannot be changed in review. The measurement is always stored relative to the instrument position.

Measure points on a plane

In a conventional survey, the Measure points on a plane measurement method is used to define a plane and then measure points relative to the plane.

A horizontal plane, a vertical plane, or a tilted plane can be defined by selecting points in the job or measuring new points. After defining the plane, an Angles only measurement to the plane creates an angles and computed distance observation onto the plane. Alternatively, an Angles and distance measurement to the plane computes the perpendicular offset to the plane.

The type of plane calculated by the software depends on the number of points selected:

<table>
<thead>
<tr>
<th>No. of points</th>
<th>Plane type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Horizontal</td>
</tr>
<tr>
<td>2</td>
<td>Vertical through 2 points</td>
</tr>
<tr>
<td>3 or more</td>
<td>Plane with residuals (for 3 points, the residuals will be 0). The plane can be a "Free" plane created as a best fit (typically tilted) plane through all points, or a "Vertical" plane constrained to a best fit vertical plane through all points. Tap the Free / Vertical softkey to toggle between the two modes.</td>
</tr>
</tbody>
</table>

1. From the main menu, select Measure / Measure points on plane.
2. To define the plane:
 a. Either tap Add to select the point selection method and then select the point(s) to use to define the plane, or tap Measure to go to the Measure point screen and measure a new point to use in the plane definition. Add or measure at least enough points to define the required plane.
 b. Tap Calculate to calculate the plane.
 c. If the plane uses 3 or more points, you can tap Vertical to calculate a vertically constrained plane. If required, tap Free to recalculate the plane using the best fit through all points.
d. Use the values in the *Residuals* column to identify any points that you want to exclude. Tap a row in the table to exclude or include a point and automatically recalculate the plane. The values in the *Residuals* column are updated.

3. Tap **Continue** to measure points relative to the plane.

4. Enter a **Point name**.

5. Select the **Method** to use for calculating the point:
 - *Angle and distance* calculates coordinates for the measured point as well as the distance from the point to the plane.
 - *Angle only* calculates coordinates for the observed point using the intersection of measured angles and the plane.

6. Tap **Measure**.

7. Tap **Store** to store the point in the database.

Tip - When measuring with *Angles and distance*, configure the instrument **EDM settings** to turn on tracking mode to see the delta distance to the plane field update in real time.

Measure 3D axes

To measure a point relative to a 3D axis using General Survey and a conventional instrument:

1. From the **Measure** menu, select **Measure 3D axes**.

2. Key in or measure the two points that define a 3D axis.
 - To measure a point, tap the pop-up menu button on the point name field and select **Measure** from the list of options displayed.

3. Tap **Options** to select the format of the delta display for the points measured relative to the axis.
 - The content and format of the delta display is controlled by XSLT style sheets. Translated default XSLT Measure 3D Axes Style Sheet (*.3ds) files are included with the language files, and accessed by General Survey from the language folders. You can create new formats in the office and then copy them to the [Systems files] folder on the controller.

4. Tap **Next**.
 - The instrument is automatically put into TRK mode. When General Survey receives a distance, the deltas fields are automatically updated.
 - If you are not measuring to a prism, use Instrument functions to set DR mode.
 - You can accept the TRK measurement, or tap **Measure** to take an STD measurement.

The General Survey software reports the coordinates and elevation for the measured point, and the orthogonal and vertical deltas for the point relative to the 3D axis. The following diagram and table describes the reported deltas using the default format.
Conventional Survey – Measure

1	Point 1 defining the 3D axis	5	Vertical offset to vertical point on 3D axis
2	Point 2 defining the 3D axis	6	Radial offset to vertical point on 3D axis
3	Measured point	7	Perpendicular offset to orthogonal point on 3D axis
4	Horizontal offset to 3D axis	8	Radial offset to orthogonal point on 3D axis

General Survey also reports the:
- distance from Point 1 and Point 2 to the calculated orthogonal point on the 3D axis
- distance from Point 1 and Point 2 to the calculated vertical point on the 3D axis
- coordinates and elevation for the calculated orthogonal and vertical points on the 3D axis

5. To store the measurement, enter a **Point name**, and a **Code**, if required, and then tap **Store**. You can continue to measure and store additional points.

Tap **Back** to define a new 3D axis or to change the deltas display format.

Note –
- Descriptions and Attributes are not supported.
- The style sheet that you selected in Measure / Measure 3D axes is used when displaying 3D axes records in Jobs / Review job.
- If points 1 and 2 define a vertical axis, all vertical deltas show as null (?).

Dual-prism offset

In a conventional survey, use this measurement method to coordinate a point that cannot be observed directly with a pole in a plumb position.

Note – *The use of a tiltable prism with the appropriate nodal offset will give accurate results regardless of the direction of pole tilt. Prisms such as the Trimble VX/S Series 360° do not correct the vertical angle and slope distance for the difference between the optical center of the prism and the center line of the rod.*

To measure a point using the dual-prism offset method:

1. As shown in the following diagram, space two prisms (A and B) apart on the range pole. The distance BC is known.
2. From the main menu, select Measure and then perform a station setup. See Station setups – Overview.

3. From the Measure menu, select Measure topo.

4. In the Point name field, enter the name of the point.

5. In the Code field, enter a feature code (optional).

6. In the Method field, select Dual-prism offset.

7. Complete the fields as required.

 Tip - Enter a suitable Tolerance AB to generate a warning if there is a difference between the keyed-in distance AB between the two prisms and the measured distance AB between the two prisms. Exceeding the tolerance could indicate that the entered distance AB is incorrect, or it could indicate pole movement between the measurement to prism A and the measurement to prism B.

8. Take two measurements (tap Measure).

The General Survey software calculates the obscured position (C) and then stores it as a raw HA VA SD observation.

All raw observations are stored internally in the job file and are available in Custom ASCII Export.

Circular object

In a conventional survey, use this measurement method to calculate the center point of a circular object, such as a water tank or silo. To do this:

1. From the Measure menu, select Measure topo.

2. Use the Circular object method to measure an angle and distance to the front center face of the circular object.

 There are two different workflows you can use to measure a circular object; Bisect tangents (default) and Center + tangent. To configure the method, tap the arrow or press the Shift key to access the second row of softkeys in the Measure topo screen, tap Options, and then specify the Circular object method.

3. Do one of the following:
- If you are using the bisect tangent method, you are prompted to point and measure an Angles only to the visible edges of the left and right sides of the circular object. If the total station is motorized it automatically turns to the half angle between the Angles only measurements, and makes a DR measurement to a point on the circumference of the circular object. If the total station is not motorized you must turn the total station to the half angle so that it can complete the measurements. The two Angles only measurements and the third DR measurement are used to compute the radius of the circular object. The radius distance is added to the DR measurement and a raw HA VA SD observation to the center of the object is stored.

![Diagram of bisect tangent method]

1. Total station
2. Circular object
3 and 4 Angles only measurements
4. DR measurement
5. Center of object

- If you are using the center + tangent method, measure an angle and distance to the front center face of the circular object, and then observe an angles only measurement to the side of the circular object. From these two measurements, General Survey calculates the center point of the circular object and stores it as a raw HA VA SD observation. The radius is also calculated and stored with the observation.

![Diagram of center + tangent method]

1. Total station
2. Circular object
3. Angle and distance measurement
4. Angles only measurement
5. Center of object
Measure rounds

This topic describes how to measure multiple sets (rounds) of observations with a conventional instrument and the General Survey software.

A round can consist of one of the following:

- a set of single face 1 observations
- multiple sets of single face 1 observations
- a set of matched face 1 and face 2 observations
- multiple sets of matched face 1 and face 2 observations

Rounds can be used in a number of different ways depending on your equipment, the accessibility of points, and the procedures to observe the points, such as the order in which the observations are made.

Measuring rounds of observations

1. From the Measure menu, select Measure rounds.
2. Tap Options to configure the rounds options.

 Before you start measuring points, make sure that the Face order and Sets per point settings are correct. You cannot change these settings after you start measuring points.

3. Manually build the rounds list by observing each point to include in the round on the first face.
4. Measure all points for subsequent rounds.
5. When all observations are complete, General Survey software shows the Standard deviations screen.
6. Tap Close to save and exit rounds.

Note –

- When using servo or robotic instruments, check that the instrument has sighted the target accurately. Manually adjust it if necessary. Some instruments can perform accurate sighting automatically. For information on the instrument specifications, refer to the instrument manufacturer's documentation.

- Select Interrupted target measurement if the measurement is likely to be interrupted, for example, when measuring in traffic.

- If you measure to static targets when there are two prisms close together, use FineLock or Long Range FineLock technology.

 - With a Trimble S8 or S9 total station equipped with FineLock technology, you can use FineLock mode when measuring to a prism that is 20 m - 700 m away.

 - With a Trimble S8 or S9 total station equipped with Long Range FineLock technology, you can use Long Range FineLock mode when measuring to a prism that is 250 m - 2500 m away.

- If you are using a servo or robotic instrument to measure a known (coordinated) point, tap Turn. Alternatively, with a servo instrument, set the Servo auto turn field in the survey style to HA & VA, or HA only to automatically turn the instrument to the point.
If you tap Esc in the Measure screen, the current round is discarded.

The top of the Measure rounds screen shows the following:

- the current face observations
- when you use more than one set per point, the number of the current set and the total number of sets to be measured (shown in brackets)
- the number of the current round the total number of rounds to be measured (shown in brackets)

For example, "Face 1 (2/2) (1/3)" shows that the instrument is on face 1 of the second set of two sets and the first of three rounds.

Building the rounds list manually

When you manually build the rounds list, the General Survey software automatically adds each point to the internal rounds list as it is measured for the first time. The rounds list contains all the information about each point such as point name, code, target height, prism constant, and target ID.

To manually add a point to the rounds list, and then measure rounds:

1. Choose to include or exclude the backsight observation.
 See also Including/excluding the backsight.
2. Follow the same procedure as for measuring a topo point.
 Note – To specify the prism constant or the height of the target for each observation in the rounds list, tap the target icon. If the prism constant is to be subtracted from measured distances, enter a negative value. You cannot alter the prism constant or the target height for subsequent rounds. Instead, General Survey uses those values stored when building the rounds list.
3. When the rounds list is built, tap End Face. The General Survey software:
 - Defaults to the correct point details for each observed point.
 - Directs you to change face when required. With a servo-driven instrument, this happens automatically.
 - Automatically turns and measures when using Autolock or FineLock technology, and Automated rounds is enabled.
 - Displays the results. You can then delete bad data as required.

Note –

- You cannot add the same point to the rounds list more than once. To take more measurements to points already measured, tap End face.
- You cannot edit the rounds list. Before you tap End face, be sure to observe all points to include in the rounds observations.
- When measuring a DR target with a Trimble VX Spatial Station or Trimble S Series total station with automated rounds, the General Survey software will pause to allow you to sight to the target. You must manually sight and measure the point to continue.
Including/excluding the backsight from a set of rounds

Trimble recommends observing the backsight on both faces if you are taking foresight observations on both faces. If you exclude the backsight:

- the backsight observation(s) taken during the station setup is used to compute the MTA.
- if you do not measure the backsight on face 2 and there is only one single face observation to the backsight, and the rounds include observations on both faces, then the horizontal angle face 2 measurements observed using Measure rounds will not be used when calculating the MTAs.

Rounds – maximum number

The following limits apply in rounds:

- rounds - maximum 100
- points per round - maximum 200
- sets per point within each round - maximum 10

Even though the maximum limits set in the General Survey software are generous, the limit on how many points you can observe depends on the memory available on the controller. For example, you could measure 100 rounds to 10 points, or 10 rounds to 200 points, but memory limits preclude measuring 100 rounds to 200 points.

For more details see:

Standard deviations screen
Point - Residuals screen
Point details screen
FineLock
Face order
Observation order
Sets per point
Number of rounds
Skipping observations
Automated rounds
Monitoring

Standard deviations screen

At the end of each round, the Standard deviations screen appears. This screen shows the standard deviations of each point in the rounds list.

Do one of the following:

- To observe another round, tap + Round.
- To store the current rounds session, tap Close.
- To view/edit the Details of a point, highlight the point and then tap Details.
- To view or edit the residuals of each individual observation to a point, tap the point in the list once.
- If you have enabled a measured point to be added to a CSV file, select the Add to CSV file option. The point will be stored in the displayed file name. To enable adding a file, see: Add to CSV file.
- To exit from rounds and delete all rounds observations, tap Esc.

Note –
- Each individual round is stored to the job only when you tap Close or + Round to exit the Standard deviations screen.
- To change the rounds configuration settings, tap Options.

Tips
- To highlight an item in a list, tap and hold the item for at least half a second.
- To sort a column in ascending or descending order, tap the column header. Tap the Point column header to sort the point in ascending or descending observed order.
- To change the residual display view, select an option from the drop-down list in the Residuals screen.

Point – Residuals screen

The Point residuals screen shows the differences between the mean observed position and the individual observations to a particular point.

Do one of the following:
- To disable an observation, highlight it and then tap Use.
- To view the details of an observation, highlight it and then tap Details.
- To return to the Standard deviations screen, tap Back.

Note –
- If you have measured face 1 and face 2 observations to a point, when you disable the observation for one face, the corresponding observation on the opposite face is automatically disabled.
- Whenever you make a change in the Point residuals screen, the mean observations, residuals, and standard deviations are recalculated.
- If the current station setup has a single backsight only, the Use softkey is not available for observations to the backsight. Observations to the backsight are used to orientate observations and cannot be deleted.
- If you remove observations, the icon appears. If you skipped observations in a round, no icon appears.

Tip - If the residuals for an observation are high, it may be better to disable the observation from the round.
Point details screen

The *Point details* screen shows the mean observation details for a particular point.

Remote object

In a conventional survey, if the instrument does not support DR mode, or if you cannot measure a distance, use this method to calculate the height and/or width of a remote object. See the following diagram.

1. Start a conventional survey.
2. Select *Measure / Measure Topo / Remote object*.
3. Measure an angle and distance to the bottom of the remote object (1).
4. Set the method as required.
5. Sight to the Remote point (2).
6. Tap *Store* to store the observation.
7. To make multiple remote object observations, repeat steps 5 and 6.

Using the first measurement and continuous HA VA angles, General Survey calculates the position of the remote object, showing the width and elevation difference from the base point. The observation to the base of the remote object is stored as an HA, VA, SD. The Remote point is stored as an HA, VA with a computed SD, including the Object height and Object width.

Scanning with an SX10 scanning total station

3D scanning is an automated direct reflex (DR) measuring process that digitally captures the shape of physical objects you have defined using a laser of light. 3D laser scanners create point clouds of data from the surface of an object.

Scanning with a Trimble SX10 scanning total station is available with USB, 2.4 GHz long range radio (LRR), and Wi-Fi connections to the controller.

To access the *Scanning* screen, from the *Measure* menu tap *Scanning*.

For more details, see:
- Preparing for the scan
- The Scanning screen
Defining the scan parameters
Progress information
Pausing and continuing a scan
Ending a scan

Preparing for the scan
When scanning, set up the instrument so that you have a good view of the object you are scanning. For example, when scanning a horizontal surface, set up the instrument as high as possible overlooking the plane. For a vertical surface, the instrument should be set up as close as perpendicular to the plane as possible.
You can scan a full 360° horizontally and vertically down to 148° (164 gon).
If the Trimble SX10 scanning total station is set up on a:
- known location, perform a standard station setup.
- non-coordinated position, create a scan station.

The Scanning screen

Video toolbar
For information about the buttons in the Video toolbar, see Video.

Scanning softkeys

<table>
<thead>
<tr>
<th>Softkey</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>+Station</td>
<td>Create a new scan station. This softkey appears only if the current station type is a scan station.</td>
</tr>
<tr>
<td>![Reset region]</td>
<td>Tap Reset region to clear the framing region.</td>
</tr>
<tr>
<td>![Undo]</td>
<td>Tap Undo to remove the last created frame point.</td>
</tr>
<tr>
<td>![Complementary frame]</td>
<td>Tap Complementary frame to select the horizontal complement to the currently defined frame. For example, if you define a frame that is 90°, tap Complementary frame to select the area that is 270°. This softkey appears only if the Framing method is Rectangle.</td>
</tr>
<tr>
<td>Zenith or Nadir</td>
<td>The appropriate softkey appears when the scan frame includes the zenith or nadir. Tap the softkey to swap between the current frame and the compliment.</td>
</tr>
<tr>
<td>Video</td>
<td>Tap the up arrow softkey and then tap Video to show or hide the video feed from the instrument.</td>
</tr>
<tr>
<td>Options</td>
<td>The software automatically checks the tilt of the instrument during scanning. To change the tilt tolerance, tap the up arrow softkey, tap Options and then enter a new value in the Tilt tolerance field.</td>
</tr>
</tbody>
</table>
Defining the scan parameters

1. Select the framing method and then define the frame area.

<table>
<thead>
<tr>
<th>Framing method</th>
<th>To define the scan frame...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectangle</td>
<td>Tap on the video screen to define the first corner and then the diagonally opposite corner of the scan rectangle.</td>
</tr>
<tr>
<td>Polygon</td>
<td>Tap on the video screen to define each vertex of the polygon scan area.</td>
</tr>
<tr>
<td>Horizontal band</td>
<td>Tap on the video screen to define the vertical edges of the full 360° horizontal band.</td>
</tr>
<tr>
<td></td>
<td>Do one of the following:</td>
</tr>
<tr>
<td></td>
<td>• To define the upper limit of a band down to 148°, tap on the video screen above 90° VA.</td>
</tr>
<tr>
<td></td>
<td>• To define the lower limit of a band up to the zenith, tap on the video screen below 90° VA.</td>
</tr>
<tr>
<td></td>
<td>To switch between the upper and lower selection, Tap Zenith or Nadir.</td>
</tr>
<tr>
<td></td>
<td>Tap again in the video screen to limit the upper or lower vertical edge of the horizontal band you have defined.</td>
</tr>
<tr>
<td>Full dome</td>
<td>No frame definition is required. The full dome always scans a full 360° horizontally and vertically down to 148° (164 gon).</td>
</tr>
</tbody>
</table>

Note – *When the scan frame is filled it is an acceptable frame; if the scan frame is hollow then the closing line is crossing another line which must be rectified before you are able to start the scan.*

2. Select the required **Scan density**. To check the point spacing for the selected scan density, enter the distance to the target in the **At distance** field. The value shown in the **Point spacing** field shows the point spacing at the specified distance.

Note – *Only the tele camera is coaxial with the telescope. For accurate framing at close range, enter the approximate distance from the instrument to the object being scanned in the At distance field and then define the scan frame. Entering the correct distance ensures the scan frame is drawn in the correct position by correcting for the offset between the overview or primary camera and the telescope.*

The software uses the defined frame area to calculate the **Number of points** and **Estimated time** required to complete the scan.

3. To capture a panorama image with the scan, select the **Panorama** check box and specify the **panorama settings**.

4. To start scanning, tap **Start**.

Note – *The estimated time given is for capture only. Total scan time including data transfer will be longer and depends on the connection method.*
Progress information

During a scan, the following progress information appears in the scanning window:

- Panorama progress information.
- The percentage of scan completed.
- The number of points scanned.
- The estimated time remaining.

While a scan is in progress, other conventional instrument/survey functions are disabled. If you need to access a conventional survey or instrument function during a scan, you must pause the scan, perform the operation and then continue the scan.

Tilt check

If the compensator is enabled, the software performs a tilt tolerance check when a scan is paused, completed, or canceled and compares the current tilt value with the tilt value recorded when the scan started or resumed. If the instrument level has changed more than the defined tilt tolerance during the scan, a tilt error message shows the amount of change at the distance specified in the At distance field in the Scanning screen. To continue/save the scan, tap Yes. To cancel the scan, tap No.

A tilt check is not performed if the scan is interrupted because the instrument has shut down due to low power.

The tilt change is displayed in the scan record in Review job. If multiple tilt tolerances messages are displayed for a single scan, the largest tilt change is displayed in the scan record in Review job. If the instrument level is tilted such that it is outside the compensator range when the tilt check is performed, the scan record shows "Compensator out of range".

Pausing and continuing a scan

To pause a scan while it is in progress, tap Pause. To resume the paused scan, tap Continue.

If the connection to the instrument is interrupted during scanning and the "Total station not responding" message appears:

- To continue scanning, reconnect to the instrument and then tap Continue.
- To end the survey, tap Cancel.

If you tap Cancel and then reconnect to the instrument, you can still access the interrupted scan. To do this, select Use last in the Station setup screen and then Scanning from the Measure menu. You are prompted to continue the previous scan or to download the partially captured scan.

Ending a scan

When the scan is complete, the instrument returns to its original position.

To cancel a scan that is in progress, tap Esc and then select whether to save or delete the scan. The scanning record and associated RWCX file will still be written if you manually cancel a scan.
Note –

- When the scan is complete, the name of the scan file and the scan properties are stored in the job file.
- When you delete a scan, the scan data is still saved but the record is marked as deleted. Go to the scan record in the Review job screen to undelete a scan.
- Scanned points are not stored in the job file and are not shown in point manager; they are written to an RWCX file that is saved to the SdeDatabase.rwi folder in the <jobname> Files folder.
- You can import the JOB or JXL file into the Trimble Business Center or Trimble RealWorks Survey software. Associated RWCX files stored in the SdeDatabase.rwi folder and JPEG files stored in the <jobname> Files folder are imported at the same time.

Capturing a panorama with an SX10 scanning total station

In a conventional survey using a Trimble SX10 scanning total station, use the Panorama measurement method to capture a panorama image without performing a scan.

Note – You can also capture a panorama as part of a scan. See Scanning with an SX10 scanning total station.

1. From the Measure menu, select Panorama. The SX10 Panorama screen appears.
2. Select the framing method and then define the frame area. See Scanning with an SX10 scanning total station
3. For accurate framing at close range, enter the approximate distance from the instrument to the object being scanned in the At distance field and then define the scan frame. Entering the correct distance ensures the scan frame is drawn in the correct position by correcting for the offset between the overview or primary camera and the telescope.
4. Select the camera to use.
5. If you are working in a dark environment and want to illuminate the target, select Solid from the Target illumination field.
 This field does not appear if you have selected the overview camera.
6. To fix the exposure to the settings in use at the time you tap Start, select the Fixed exposure check box. Point the instrument toward the location that defines the camera exposure that you want used for all panoramic images before you tap Start.
 Note – The exposure settings for the camera affect the exposure used by still images/panoramas as well as video. To access the camera settings, tap . When checking the exposure settings, make sure you are using the zoom level that matches the camera you have chosen to capture the panorama.
7. In the Image overlap field, enter the amount the images should overlap. A higher overlap results in more tie points.
 The software uses the defined frame area to calculate the Number of images and Estimated time required to complete the panorama.
8. Tap **Start** to begin capturing the panorama.

 Note – *The estimated time given is for capture only. Total scan time including data transfer will be longer and depends on the connection method.*

 During panorama capture, the number of panorama images captured and the percentage of the panorama completed is shown.

 When the panorama is complete, the instrument returns to its original position. The software returns to the **SX10 Panorama** screen where you can capture another panorama image or create a new scan station. Alternatively, tap **+Station** to create a new scan station.

 Panorama images are saved to the `<jobname> Files` folder.

Scanning with a VX or S Series total station

This topic applies when scanning using a Trimble VX Series or S Series instrument that has VISION technology. If you are connected to a Trimble SX10 scanning total station, see **Scanning with an SX10 scanning total station**. Use **Surface scan** when connected to a Trimble S Series total station that does not have VISION technology.

3D scanning is an automated direct reflex (DR) measuring process that digitally captures the shape of physical objects you have defined using a laser of light. 3D laser scanners create point clouds of data from the surface of an object.

Scanning is available with USB, 2.4 GHz long range radio (LRR), and Bluetooth connections to the controller.

To access the **Scanning screen**, from the **Measure** menu tap **Scanning**. The options available in the **Scanning screen** depend on the connected instrument.

For more details, see:

- Scan methods
- Framing methods
- The Scanning screen
- Scan points
- Scan parameters
- Scanning modes
- Panorama images
- Progress information
- Ending a scan
Scan methods

Perform a scan using one of the following methods:

<table>
<thead>
<tr>
<th>Use the method...</th>
<th>To...</th>
</tr>
</thead>
<tbody>
<tr>
<td>HA VA interval</td>
<td>Scan complex surfaces when you cannot use a plane to approximate the surface you are scanning.</td>
</tr>
<tr>
<td>Vertical plane</td>
<td>Use Trimble SureScan™ technology to scan plane surfaces where you need a regular grid interval.</td>
</tr>
<tr>
<td>Horizontal plane</td>
<td>Tilted plane</td>
</tr>
<tr>
<td>Line and offset</td>
<td>Scan from a center line that has offsets to the left and/or right. General Survey defines the surface using horizontal offsets perpendicular to the center line.</td>
</tr>
</tbody>
</table>

Note –

- **Scan time is increased if there are areas within the scan that will not return an EDM signal.** Where possible, try to minimize blank space in the scan area.
- **When you perform a scan using a robotic connection, Trimble recommends that you stay within the range of the radio link to ensure that all necessary data is collected successfully. If you lose the radio link, the remainder of the current scan line is skipped.**
- **You can scan a full 360° horizontally and vertically down to 130° (144 gon).**
- **Make sure that the DR maximum distance configured in Instrument / EDM settings is set high enough to achieve the required scanning range.**

Framing methods

The framing method options depend on the scan method selected. The possible options are:

<table>
<thead>
<tr>
<th>Framing method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectangle</td>
<td>Tap on the video screen to define the first corner and then the opposite corner of the scan rectangle. Tap and drag the rectangle to resize it.</td>
</tr>
<tr>
<td>Polygon</td>
<td>Tap on the video screen to define each vertex of the polygon scan area. Tap and drag the last vertex to move it.</td>
</tr>
<tr>
<td>Horizontal band</td>
<td>Tap on the video screen to define the upper and lower vertical edges of the full 360° horizontal band.</td>
</tr>
<tr>
<td>Plane</td>
<td>For each point on the plane, aim to the point and then tap on the video screen to define the point.</td>
</tr>
</tbody>
</table>
Note – The camera is not coaxial with the telescope. For accurate framing at close range, enter the approximate distance from the instrument to the object being scanned in the At distance field and then define the scan frame. Entering the correct distance helps to draw the scanning frame in the correct position and enables the software to correct for the offset between the camera and the telescope. Alternatively, have the instrument in DR and TRK mode when framing.

The Scanning screen

Video toolbar

For information about the buttons in the Video toolbar, see Video.

Scanning softkeys

<table>
<thead>
<tr>
<th>Softkey</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>🗯️</td>
<td>Tap Define region and follow the prompts on screen to tap on the screen and define the region to scan.</td>
</tr>
<tr>
<td>🗬️</td>
<td>Tap Pan and then tap an area of the map to center on, or tap and drag the video area to where you want to reposition the image.</td>
</tr>
<tr>
<td>🔄️</td>
<td>Tap Reset region to clear the framing region.</td>
</tr>
<tr>
<td>🔷️</td>
<td>Tap Undo to remove the last created frame point.</td>
</tr>
</tbody>
</table>

Options
- **Display point clouds** controls the option to display the point cloud over the scan.
- **Color** controls the color of the point cloud.
- **Point size** controls the width of the pixel displayed in the point cloud.

Point cloud color

<table>
<thead>
<tr>
<th>Select</th>
<th>To...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloud color</td>
<td>Show all points the same color</td>
</tr>
<tr>
<td>Station color</td>
<td>Indicate the station used to measure the points</td>
</tr>
<tr>
<td>Scan color</td>
<td>Indicate the scan the points belong to</td>
</tr>
<tr>
<td>Gray scale intensity</td>
<td>Indicate the reflective intensity of points using a gray scale</td>
</tr>
<tr>
<td>Color coded intensity</td>
<td>Indicate the reflective intensity of points using color coding</td>
</tr>
</tbody>
</table>

Scan points

When scanning, set up the instrument so that you have a good view of the plane or line you are scanning. For example, when scanning a horizontal plane, set up the instrument as high as possible overlooking the plane. For a vertical plane, the instrument should be set up as close as perpendicular to the plane as possible.
When measuring or selecting scan points, choose points that are reasonably spaced and provide a good spread. For example, when scanning a vertical plane, choosing points that are in diagonally opposing corners of the plane provides the best geometry.

Scan parameters

The scan parameter options depend on the scan method selected.

Note – *The time to complete a scan is an estimate only. Actual scan times will vary depending on the surface or object being scanned.*

<table>
<thead>
<tr>
<th>For the method...</th>
<th>Select one of the following options and then enter the appropriate value (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HA VA interval</td>
<td>• Horizontal and vertical distance intervals</td>
</tr>
<tr>
<td></td>
<td>• Horizontal and vertical angle intervals</td>
</tr>
<tr>
<td></td>
<td>• Total number of points in the scan</td>
</tr>
<tr>
<td></td>
<td>• Total time</td>
</tr>
<tr>
<td>Note</td>
<td>Defining the scanning grid through distance intervals assumes that the scanning object is a constant distance from the instrument. In other cases, the scan points will not constitute an even grid.</td>
</tr>
<tr>
<td>Vertical plane</td>
<td>• Grid interval</td>
</tr>
<tr>
<td></td>
<td>• Total number of points in the scan</td>
</tr>
<tr>
<td>Horizontal plane</td>
<td>• Total time</td>
</tr>
<tr>
<td>Note</td>
<td>The defined scan area may not exactly fit the grid interval. There may be an area left over along the scan extents that is smaller than the grid interval. If the width of this area is less than one-fifth of the grid interval, the points along this scan area will not be measured. If the width is more than one-fifth of the grid interval, then an extra point is scanned.</td>
</tr>
<tr>
<td>Tilted plane</td>
<td>• Interval, entering the left and right Offset values, the Offset interval, and the Station interval</td>
</tr>
<tr>
<td></td>
<td>• Total number of points in the scan</td>
</tr>
<tr>
<td></td>
<td>• Total time</td>
</tr>
</tbody>
</table>

Scanning modes

Available *Scanning modes* depend on the connected instrument:

- *High speed* scans up to 15 points per second to a maximum range of about 150 m.
- *Long range (TRK)* scans with the EDM in TRK mode and scans up to 2 points per second to a maximum range of about 300 m.
- *Long range (STD)* scans with the EDM in STD mode and scans up to 1 point per second to a maximum range of about 300 m.
Conventional Survey – Measure

Note –
- Higher speed scans can result in more skipped points. Select a scanning mode appropriate to the object you are scanning.
- When using long range scanning mode, intensity information is not available and is not saved to the TSF file.

Panorama images
To capture a panorama image with the scan, select the Panorama check box and then tap Next and specify the settings for the panorama image. See Panorama.

Progress information
During a scan, the following progress information appears in the scanning window:
- Panorama progress information.
- The percentage of scan completed.
- The number of points scanned.
- The estimated time remaining. This is updated as the scan progresses to reflect the current scan speed and is dependent on the surface of the object in the scan.

While a scan is in progress:
- Other conventional instrument/survey functions are disabled. If you need to access a conventional survey or instrument function during a scan, you must pause the scan, perform the operation and then continue the scan.
- You cannot access the video window.

Ending a scan
When the scan is complete, the instrument returns to its original position.
To cancel a scan that is in progress, tap Esc and then tap Yes. The scanning record and associated TSF file will still be written if you manually cancel a scan.
To export scan data, from the Jobs menu tap Import / Export and then tap Export fixed format. Select Comma delimited in the File format field and then tap Accept. In the Select points screen, select Scan file points. A message confirms the export is complete. Tap OK.

Note –
- When the scan is complete, the name of the scan file and the scan properties are stored in the job file.
- Scanned points are not stored in the job file; they are written to a TSF file that is saved to the <jobname> Files folder.
- If a scan contains over 100,000 points, the points will not appear in the map or in point manager.
You can import the JOB or JXL file into the Trimble Business Center or Trimble RealWorks Survey software. Associated TSF and JPEG files stored in the <jobname> Files folder are imported at the same time.

When creating DC files, either on the controller or when downloading the file with office software such as Trimble Geomatics Office or the Trimble Data Transfer utility, the data from the TSF file(s) associated with the job is inserted into the DC file as regular conventional observations.

To transfer JPEG files from the Trimble CU in the docking station to the office computer, use the USB-to-Hirose cable. You cannot use the DB9-to-Hirose serial cable to transfer JPEG files.

Capturing a panorama with a VX or S Series total station

In a conventional survey using a Trimble VX Series or S Series instrument that has VISION technology, use the Panorama measurement method to capture a panorama image without performing a scan.

Note – You can also capture a panorama as part of a scan. See Scanning with a VX or S Series total station. When connected to a Trimble SX10 scanning total station, see Capturing a panorama with an SX10 scanning total station.

1. Connect to the instrument.
2. From the Measure menu, select Panorama.
3. Select the framing method and define the framed area. For more information, see Framing methods.
4. Configure settings for the panorama image(s). The available settings depend on the connected instrument.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image size</td>
<td>The image captured is always the same as the video display on screen. Not all image sizes are available at all zoom levels. Use the navigation controls in the video screen to change the zoom level.</td>
</tr>
<tr>
<td>Compression</td>
<td>The higher the quality of the image, the larger the file size of the captured image.</td>
</tr>
<tr>
<td>Fixed exposure</td>
<td>Fixes the exposure to the settings at the time you tap Start. When using the Panorama function with Fixed exposure enabled, point the instrument toward the location that defines the camera exposure that you want used for all panoramic images before you tap Start. Note – The exposure settings for the camera affect the exposure used by still images/panoramas as well as video. To access the camera settings, tap 🥤.</td>
</tr>
<tr>
<td>Fixed contrast</td>
<td>If available, select this check box to adjust each image to the best contrast and white balance.</td>
</tr>
<tr>
<td>Setting</td>
<td>Function</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>Conventional Survey – Measure</td>
<td></td>
</tr>
</tbody>
</table>
| **Panorama function** | When using the Panorama function with Fixed contrast enabled, point the instrument toward the location that provides the best contrast **before** you tap Start. If a high contrast area is not available (for example, you want to point the instrument at a low contrast white wall), Trimble recommends clearing the Fixed contrast check box.
The Fixed contrast setting is independent of the Fixed exposure setting. Trimble recommends the following:
- For the best contrast and good blending between adjacent images, enable HDR if it is available, and disable the Fixed exposure and Fixed contrast check boxes.
- If HDR is not available:
 - For good contrast but poorer blending between adjacent images, enable the Fixed exposure check box and disable the Fixed contrast check box.
 - For good blending between adjacent images but less contrast, enable both the Fixed exposure and Fixed contrast check boxes.
| **High dynamic range (HDR)** | If available, select this check box to enable HDR imaging.
With HDR turned on, the instrument captures three images rather than one image, each with different exposure settings. During HDR processing in Trimble Business Center, the three images are combined to produce a composite image that has better tonal range to show more detail than any of the individual images.
For best results, Trimble recommends disabling the Fixed exposure and Fixed contrast check boxes when HDR is enabled.
| **Image overlap** | Enter the amount the images should overlap. A higher overlap results in more tie points.
| 5. Tap **Start** to begin taking the images.
During panorama capture, the number of panorama images captured and the percentage of the panorama completed is shown.
6. Tap **Finish** when all images have been captured.
Panorama images are saved to the `<jobname> Files` folder.
| **Surface scanning with a VX or S Series total station** | 3D scanning is an automated direct reflex (DR) measuring process that digitally captures the shape of physical objects you have defined using a laser of light.
Note – Use Surface scan when connected to a Trimble S Series total station that does not have VISION technology. If the connected instrument has Trimble VISION technology, use Scanning with a VX or S Series total station. If the connected instrument is a Trimble SX10 scanning total station, see Scanning with an SX10 scanning total station.
|
Performing a surface scan using General Survey

1. From the Survey menu, select Surface scan.
2. Enter the Start point name and code (if necessary).
3. In the Method field, select a measurement method.
4. Define the area for the scan and grid interval.
5. Tap the instrument icon to access Instrument functions and set the EDM measurement method (TRK is fastest).
 The total number of points to scan, scan grid dimensions, and estimated scan time are displayed. Change the scan size, step sizes or EDM measurement method to increase or decrease the number of points and scan time.
6. Tap Start.

Defining the scan area

To define the scan area, do one of the following:
- If the point already exists, enter the point name, or use menu arrow to select it from the list.
- From the pop-up menu in the Top left and Bottom right fields select Fast fix or Measure to measure and store points that define the limits of the search.

Define the scan area with one of the following methods:
- HA VA interval
- Rectangular plane
- Line and offset

HA VA interval

Use this method on complex surfaces when you cannot use a rectangular plane to approximate the surface you are scanning.

1. Aim to the top left corner of the scan area (1) and measure a point.
2. Aim to the bottom right corner of the scan area (2) and measure another point.
3. Define the angular grid interval, where:
 3 is the Horizontal angle
 4 is the Vertical angle
Tip - To define a Horizontal only scan of a 360° scan area, set the Top left and Bottom right points to the same name, and set the VA interval to null.

Rectangular plane

Use this method on a plane surface where you need a regular grid interval. General Survey determines the angle of the plane, and uses this and the grid interval to approximate how far to turn the instrument for each subsequent point.

1. Aim to the first corner of the scan area (1) and measure a point.
2. Aim to the second corner of the scan area (2) and measure another point.
3. Aim to the third point on the opposite side of the plane (3) and measure a point.
4. Define the distance grid interval, where:
 - 4 is the horizontal distance
 - 5 is the vertical distance

Line and offset

Use this method to define the area to scan from a center line that has equal offsets to the left and right. General Survey defines the surface using horizontal offsets perpendicular to the center line. The software then uses this definition and the station interval to determine approximately how far to turn the instrument for each subsequent point.
1. Do one of the following:
 - Two point method:
 a. Aim to the start point of the center line (1) and measure a point.
 b. Aim to the end point of the center line (2) and measure another point. These two points (1 and 2) define the center line.
 - Access the pop-up menu in the *Start point* field. Change the method and then define the line by a start point with azimuth and length.
2. Define the station interval (3).
3. Define the maximum offset distance (4).
4. Define the offset interval (5).

General Survey scans the center line first, then the points on the right-hand side, and finally the left-hand side.

Note – *With all of the above methods, the defined scan area may not exactly fit the grid interval. There may be an area left over along the scan extents that is smaller than the grid interval. If the width of this area is less than one-fifth of the grid interval, the points along this scan area will not be measured. If the width is more than one-fifth of the grid interval, then an extra point is scanned.*

Check topo and check backsight points

In a conventional survey, you can measure a check class point to check the station setup and the instrument is oriented correctly. You can take a check measurement to a backsight point, or to any other point.

The *Check* softkey is available in the *Measure topo* screen. Alternatively, press `Ctrl` + `K` on the controller keyboard to open the *Measure check class point* screen from anywhere in the software.

To measure a check point:

1. From the *Measure topo* screen, tap *Check*. Alternatively, press `Ctrl` + `K` on the controller keyboard.
2. Tap *Chk topo* or *Chk BS* to select either a general check measurement or a check backsight measurement.

 The *Chk BS* screen is similar to the *Check shot* screen, but the *Point name* field shows the backsight of the current station setup and you cannot edit this field.
3. In the *Point name* field, enter the name of the point to check.
 - If you are using a servo or robotic instrument, it turns to the point to be checked.
 - If the point is a backsight point, the backsight target is automatically selected, however you should make sure the details are correct.
4. In the *Method* field, select a measurement method and enter the required information in the fields that appear.
5. In the *Target height* field, enter the height of the target and then tap *Measure*.

 When measuring to the bottom notch on a *Trimble prism base*, tap the advanced pop-up arrow (4) and then select *Bottom notch*.
If you did not select the View before storage check box, the point is stored with a classification of Check. The check shot deltas appear on the Check shot screen.

When you observe the point, if the station setup is the same as when you originally measured the point, the deltas are the difference in values between the original observation and the check observation. The deltas displayed are horizontal angle, vertical distance, horizontal distance, and slope distance.

If the station setup is different from when you originally measured the point, the deltas are in terms of the best coordinates from the original point to the check point. The deltas displayed are azimuth, vertical distance, horizontal distance, and slope distance.

Note – If the point is out of tolerance, you are given the option to Store as check, or you can Store and reorient. Store and reorient will store another observation that will provide a new orientation for subsequent points measured in the current station setup. In a multiple backsight station setup (station setup plus or resection), a check backsight measurement checks the first backsight. Storing and reorienting effectively changes the multiple backsight station setup into a single station setup.

6. Tap Enter to store the check point. Tap Esc to abandon the measurement.

Tip – During a conventional survey, you can use the tap and hold menu in the map to quickly measure a check point. If there are no points selected, Check backsight is available; if one point is selected Check shot is available. Alternatively, to measure a check shot from any screen, press Ctrl + K on the controller.

See also:
- Duplicate point tolerance
- Database Search Rules

Fast fix

Tap Fast fix to quickly measure and automatically store a construction point. Alternatively, select Fast fix from the pop-up menu in the Point name field.

Note – In a conventional survey, Fast fix uses the current measurement mode. If you need more flexibility, select Measure from the pop-up menu in the Point name field.

Typically, a construction point is used in Cogo - compute points or Key in - lines and arcs.

Construction points are stored in the General Survey database with autopoint names that increment from Temp0000. They are classified higher than check points and lower than normal points. For more information, see Database Search Rules.

To view construction points in a map or list, select them from the Select filter list. To view the Select filter list, in the:

- 2D map, tap the up arrow to access more softkeys and then tap Filter.
- 3D map, tap and then select Filter.
Survey – Calibration

Calibration

A calibration calculates parameters for transforming WGS-84 coordinates into local grid coordinates (NEE). It either calculates a horizontal and vertical adjustment, or a transverse mercator projection and a 3-parameter datum transformation, depending on what has already been defined.

For accurate calibration, your site should be within at least four control points with known 3-D grid coordinates.

WARNING - You must complete a calibration **before** you compute offset or intersection points, or stake out points. If you change the calibration after computing or staking out these points, they will not be consistent with the new coordinate system and any points computed or staked out after the change.

To calibrate point coordinates:

1. Enter the grid coordinates of your control points. Key these in, transfer them from your office computer, or measure them using a conventional total station.
2. Measure the points with GNSS.
3. Perform either an automatic or a manual calibration.
4. To obtain the current list of points being used in the calibration, select *Measure / Site calibration*.

Notes and recommendations

- You can perform a calibration using one of the real-time GNSS survey styles in the General Survey software. Do this manually, or let the General Survey software do it automatically. If all the points have been measured, you do not need to connect the Trimble controller to a receiver during a manual calibration.

- Multiple calibrations can be performed in one job. The last calibration performed and applied is used to convert the coordinates of all previously surveyed points in the database.

- You can use up to 20 points for a calibration. Trimble strongly recommends that you use a minimum of four 3D local grid coordinates (N, E, E) and four observed WGS84 coordinates, with the local projection and datum transformation parameters (the coordinate system). This should provide enough redundancy.

- You can use a combination of 1D, 2D, and 3D local grid coordinates. If no projection and no datum transformation are defined, you must have at least one 2D grid point.
If you did not specify the coordinate system, the General Survey software calculates a Transverse Mercator projection and a three-parameter datum transformation.

Use the Trimble Business Center software, Trimble Data Transfer utility, or Windows Mobile Device Center to transfer control points.

Be careful when naming points that are to be used in a calibration. Before you begin, familiarize yourself with the Database search rules.

The set of WGS-84 coordinates must be independent of the set of grid coordinates.

You select the grid coordinates. Select the vertical coordinates (elevation), the horizontal coordinates (northing and easting values), or all of these together.

Place the calibration points around the perimeter of the site. Do not survey outside of the area enclosed by the calibration points, as the calibration is not valid beyond this perimeter.

The origin of the horizontal adjustment is the first point in the calibration when using one or two calibration point pairs. When there are more than two calibration point pairs, the computed centroid position is used for the origin.

The origin of the vertical adjustment is the first point in the calibration with an elevation.

When reviewing a calibration point in the database, notice that the WGS84 values are the measured coordinates. The grid values are derived from these, using the current calibration. The original keyed-in coordinates remain unchanged. (They are stored elsewhere in the database as a point with the Type field showing Keyed in coordinates and the Stored as field showing Grid.)

When you are calibrating a no projection, no datum job, (where ground coordinates are required after calibration) you must define the project height (average site height). When the job is calibrated, the project height is used to compute a ground scale factor for the projection, using the inverse of the ellipsoid correction.

When you start a Scale Factor Only job and then introduce GNSS data, you must perform a site calibration to relate the GNSS data to the Scale Factor Only point coordinates.

When you select Site Calibration, you must specify whether the Scale Factor Only coordinates in the job represent grid coordinates or ground coordinates. The site calibration computations then set up a grid coordinate system or a ground-based coordinate system, that best fits the existing data in the job to the GNSS data.

Configuring the survey style for a site calibration

A calibration calculates parameters for transforming WGS-84 coordinates into local grid coordinates (NEE). Set the parameters for computing a calibration when you create or edit a survey style.

To set the parameters for computing a calibration:
1. From the Trimble Access menu, tap Settings / Survey styles / <Style name>.
2. Tap Site calibration.
3. The Fix H. scale field to 1.0: check box details whether the calibration computation should compute a horizontal scale factor or not:
To compute the horizontal scale factor, make sure the check box is clear. (This is the default setting.) Use this option only if GNSS measurements need to be scaled to fit the local control. (GNSS measurements are usually more precise.)

To fix the horizontal scale factor to 1.0, select the check box. Select the check box to avoid distorting the geometry of the GNSS network, but note that the calibration residuals will be higher.

4. For the General Survey software to automatically perform a calibration when you measure a calibration point, select the Auto calibrate check box. To switch automatic calibration off, clear the check box.

5. Select the vertical adjustment type to be computed and applied:
 - The Constant adjustment only option will compute a vertical shift value to best fit the calibration point measured elevations to the control elevations.
 - The Inclined plane option will compute a vertical shift plus north and east inclinations to best fit the calibration point measured elevations to the control elevations. Typically, the Inclined plane method will result in smaller vertical residuals than the Constant adjustment only method.

6. Select an observation type appropriate to a calibration point. The options for a calibration point are topo point or observed control point.

 Note – If you set the observation type to Topo point, all settings are defined in the survey style for a Topo point.

7. If necessary, set the tolerances for maximum horizontal and vertical residuals, and maximum and minimum horizontal scale settings. These settings only apply to automatic calibration and do not affect manual calibration.

 You can also specify the maximum slope of the vertical adjustment plane. The General Survey software warns you if the slope in the north direction or the slope in the east direction exceeds this. Generally the default settings are appropriate.

8. Specify how the calibration points you measure will be named:
 - In the Method field, choose one of the following options: Add prefix, Add suffix, or Add constant.
 - In the Add field, enter the prefix, suffix, or constant.

The table below shows the different options and gives an example of each.

<table>
<thead>
<tr>
<th>Option</th>
<th>What the software does</th>
<th>Example value in the Add field</th>
<th>Grid point name</th>
<th>Calibration point name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same</td>
<td>Gives the calibration point the same name as</td>
<td>-</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>the grid point</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add prefix</td>
<td>Inserts a prefix before the grid point name</td>
<td>GNSS_</td>
<td>100</td>
<td>GNSS_100</td>
</tr>
<tr>
<td>Add suffix</td>
<td>Inserts a suffix after the grid point name</td>
<td>_GNSS</td>
<td>100</td>
<td>100_GNSS</td>
</tr>
<tr>
<td>Add constant</td>
<td>Adds a value to the grid point name</td>
<td>10</td>
<td>100</td>
<td>110</td>
</tr>
</tbody>
</table>
For more information, see:

- Calibration
- Automatic calibration
- Manual calibration

Manual calibration

Key in the grid coordinates of your control points. Alternatively, transfer them from your office computer, or use a conventional instrument to measure them. Then measure the points with GNSS.

Performing a manual site calibration

1. From the main menu, select *Measure / Site calibration*.
2. For *Scale factor only jobs*:
 - If the job uses ground coordinates, select *Ground*.
 - If the job uses grid coordinates, select *Grid*.
3. Use *Add* to add a point to the calibration.
4. Enter the name of the grid point and the WGS-84 point in the appropriate fields.
 - The two point names do not have to be the same, but they should correspond to the same physical point.
5. Change the *Use* field as required and tap *Accept*.
 - The calibration residuals screen appears.
6. Tap *Results* to see the horizontal and vertical shifts that the calibration has calculated.
7. To add more points, tap *Esc* to return to the calibration screen.
8. Repeat steps 3 through 6 until all the points are added.
9. Do one of the following:
 - If the residuals are acceptable, tap *Apply* to store the calibration.
 - If the residuals are not acceptable, recalculate the calibration.

Recalculating a calibration

Recalculate a calibration if the residuals are not acceptable, or if you want to add or remove points.

1. From the main menu, select *Measure / Site calibration*.
2. Do one of the following:
 - To remove (exclude) a point, highlight the point name and then tap *Remove*.
 - To add a point, tap *Add*.
 - To change the components used for a point, highlight the point name and tap *Edit*. In the *Use* field, choose whether to use the vertical coordinate of the grid point, the horizontal coordinates, or both horizontal and vertical coordinates.
3. Tap *Apply* to apply the new calibration.
Note — Each calibration calculation is independent of the previous one. When a new calibration is applied, it overwrites any previously calculated calibration.

Automatic calibration

When you use this function to measure calibration points, the calibration calculations are performed and stored automatically.
Define a projection and datum transformation. Otherwise, a transverse mercator projection will be used and the datum will be WGS-84.

Performing an automatic site calibration

1. Set your automatic calibration settings in the Site calibration screen.
 a. To view the Site calibration screen, do one of the following:
 - From the Trimble Access menu, tap Settings / Survey styles and select your survey style. Tap Site calibration.
 - When you measure a calibration point, tap Options.
 b. Select the Auto calibrate check box to display calibration residuals only if the calibration tolerances are exceeded.
 c. Configure the naming relationship between the grid and WGS-84 points.
 d. Tap Accept.
2. Enter the grid coordinates of your Calibration points. Key these in, transfer them from your office computer, or measure them using a conventional total station.
 For keyed in coordinates check that the coordinate fields are North, East, and Elevation. If they are not, tap Options and change the Coordinate view to Grid. Key in the known grid coordinates and tap Enter.
 Select the Control point check box. (This ensures that the point is not overwritten by a measured point.)
 For transferred coordinates make sure that these coordinates are:
 - transferred as grid coordinates (N, E), not as WGS84 coordinates (L, L, H)
 - control class points
3. Measure each point as a Calibration point.
 a. In the Method field, select Calibration point.
 b. Enter the grid point name. The General Survey software names the GNSS point automatically, using the naming relationship that you configured earlier.
 Once the point has been measured, the Auto-calibrate function matches the points (grid and WGS-84 values), and calculates and stores the calibration. The calibration is applied to all previously measured points in the database.
4. When you measure the next Calibration point, a new calibration is calculated using all of the Calibration points. It is stored and applied to all previously measured points.
 When one point has been calibrated, or a projection and datum transformation have been defined, the Find softkey appears. You can use this to navigate to the next point.
If the calibration residuals are exceeded, consider removing the point with the most extreme residuals. Do one of the following:

- If at least four points are left after removing that point, recalibrate using the remaining points.
- If not enough points are left after removing that point, measure it again and recalibrate.

It may be necessary to remove (re-measure) more than one point. To remove a point from the calibration calculations:

1. Highlight the point name and tap Enter.
2. In the Use field, select Off and tap Enter. The calibration is recalculated and the new residuals are displayed.
3. Tap Apply to accept the calibration.

To view the results of an automatic calibration:

1. From the Measure menu, select Site calibration. The Site calibration screen appears.
2. Tap Results to see the Calibration results.

To change a calibration that has been calculated using the Auto calibrate function, select Site calibration from the Measure menu. Then proceed as described in Manual calibration.
GNSS Survey – Setup

GNSS survey – Getting started

The process for completing measurements using a GNSS receiver is described below. Select each link to view more information.

1. Configure your survey style
2. Automatically connecting to a GNSS receiver
3. Set up the base receiver equipment (if required)
4. Set up the rover receiver equipment
5. Start the survey
6. Measure points
7. End the survey

Note – If you need to convert WGS-84 coordinates into local grid coordinates (NEE), then you must perform a site calibration before performing the above steps.

Configuring GNSS survey styles

All surveys in General Survey are controlled by a Survey Style. Survey Styles define the parameters for configuring and communicating with your instruments, and for measuring and storing points. This whole set of information is stored as a template and used each time you start a survey.

General Survey automatically connects to the GNSS receiver. Configure the style only if the defaults do not suit your needs.

Note – General Survey uses the settings from the selected survey style when you start the survey. General Survey will check the style settings to ensure that they are appropriately configured for the equipment that you are connected to. For example, if GLONASS is enabled in the survey style it will check if the GNSS receiver or antenna you are connected to also supports GLONASS. If General Survey detects an incorrect setting, or if it detects that the settings in the survey style have never been checked, it will ask the user to confirm or correct the settings. Any changed settings are saved to the survey style.‘

The GNSS survey type you use will depend on available equipment, field conditions, and the results required.
The General Survey software provides a **Real-Time Kinematic** survey style. Real-time kinematic surveys use a **data link** to send observations or corrections from the base station to the rover. The rover then calculates its position in real time.

To use one of the following survey types, you must create your own survey style:

- **FastStatic** - a postprocessed survey using occupations of up to 20 minutes to collect raw GNSS data. The data is postprocessed to achieve sub-centimeter precisions.
- **Postprocessed Kinematic** - postprocessed kinematic surveys store raw stop-and-go and continuous observations. The data is postprocessed to achieve centimeter-level precisions.
- **Real-Time Kinematic and Infill** - allows you to continue a kinematic survey when radio contact with the base station is lost. The infill data must be postprocessed.
- **Real-Time Kinematic and Data Logging** - records raw GNSS data during an RTK survey. The raw data can be postprocessed later, if required.
- **Real-Time Differential Survey** - uses the differential corrections transmitted from a land-based receiver or from SBAS or OmniSTAR satellites to achieve sub-meter positioning at the rover.

To configure a survey style:

1. From the Trimble Access menu, tap **Settings / Survey styles**.
2. Do one of the following:
 - To edit an existing survey style, tap `<Style name>` and then tap **Edit**.
 - Tap **New**. Enter a name for the style and then tap **Accept**.
3. Select each of the options in turn, and set them to suit your equipment and survey preferences.

<table>
<thead>
<tr>
<th>To configure...</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>the rover receiver</td>
<td>Rover and base options</td>
</tr>
<tr>
<td>the base receiver</td>
<td>Rover and base options</td>
</tr>
<tr>
<td>data link settings</td>
<td>Data link options</td>
</tr>
<tr>
<td>the parameters for measurement methods</td>
<td>Measurement method options</td>
</tr>
<tr>
<td>PP initialization times</td>
<td>PP initialization times</td>
</tr>
<tr>
<td>stakeout settings</td>
<td>Stakeout options</td>
</tr>
<tr>
<td>settings for a laser rangefinder</td>
<td>Configuring the survey style to use a laser rangefinder</td>
</tr>
<tr>
<td>settings for an echo sounder</td>
<td>Echo sounder instruments</td>
</tr>
<tr>
<td>settings for outputting NMEA messages</td>
<td>NMEA outputs</td>
</tr>
<tr>
<td>the tolerance for a duplicate point warning</td>
<td>Duplicate point tolerance</td>
</tr>
</tbody>
</table>

4. Once you configure all the settings, tap **Store** to save them, and then tap **Esc** to return to the main menu.
Rover and base options

The fields available in the Rover options and Base options screens are similar for all GNSS survey types. The survey types that enable postprocessing have additional fields for specifying the logging device, logging interval, and the filename formats for files. All fields that appear in the Rover options and Base options screens for any GNSS survey type are described below.

Note – The Base options screen is not available if you have set the Broadcast format to FKP, VRS, Multi station, RTCM3Net, or RTX for the RTK survey type, or if you have set the Broadcast format to SBAS or OmniSTAR for the RT Differential survey type in the Rover options screen.

For information on setting up your rover receiver equipment, see Setting up the equipment for a rover receiver.

Survey type

Select the type of survey you want to use. For a description of the types available, see Configure the survey style. The rest of the fields in the screen update to reflect the survey type selected.

Generally, when a GNSS surveying system setup consists of one base and one rover receiver, make sure that the survey type selected in the Rover options field and the Base options field is the same. However, when there are multiple rovers, you can have various configurations but make sure that if the rover is logging raw data your base station is also logging raw data.

Broadcast format

The rover selection should always correspond to the broadcast message format generated by the base.

- For real-time kinematic surveys, the format of the broadcast message can be CMR, CMR+, CMRx, or RTCM RTK.
 The default is CMRx, which is a format used by the modern Trimble receivers. It is a compressed data format designed to handle the extra load of additional GNSS signals from modernized GPS, GLONASS, Galileo, QZSS, and BeiDou. Only use CMRx if all receivers have the CMRx option installed. To check if this option is installed in the receiver, select Instrument / Receiver settings on the controller that is connected to the receiver.

 Note – If you want to operate several base stations on one frequency, use CMR+ or CMRx. For more information, see Operating several base stations on one radio frequency.

- For wide-area RTK surveys, the broadcast message format can be from the following wide-area RTK solutions: FKP (RTCM), VRS (CMR), VRS (RTCM), and RTCM3Net.

- Networked single base RTK is also supported in the form of "Multi station" surveys with both CMR and RTCM formats. These surveys enable you to connect to a network service provider by cellular modem or through the Internet, and receive CMR or RTCM data from the nearest physical reference station in the network.

- For RTX surveys, the Survey type must be RTK and the Broadcast format must be RTX (SV) or RTX (Internet). For more information, see RTX.

- For RT differential surveys, the Broadcast format must be RTCM for land-based transmissions. For satellite-based transmissions, select SBAS or OmniSTAR.
Antenna settings
To define the antenna details, select the correct antenna from the list of antennas and select the correct measurement method for the equipment and type of survey.
To set the default antenna height, enter a value in the Antenna height field.
The Part number field automatically displays the part number.
Enter the serial number.

Use station index
If you want to use multiple base stations on one radio frequency, enter the station index number that you want to use first in the Use station index field.
If you do not want to use multiple base stations on one frequency, enter the same station index number that you enter in the Base options screen.
To use any base station operating on the frequency set in the rover radio, tap Any.
WARNING - If you tap Any and there are other base stations operating on the frequency, your rover survey could receive corrections from the wrong base.
For information about using multiple bases, see Operating several base stations on one radio frequency.

Prompt station index
When you use a receiver that supports multiple base stations on one radio frequency, the General Survey software asks you to specify the base to use when you start the rover survey. You can stop this question from appearing by clearing the Prompt for station index check box. The station index number in the Use station index field is used.
In a GNSS survey style, you can set the Station index for the base receiver to a number between 0 and 31, and you can set the Use station index for the rover receiver to Any or to the same number that the base is transmitting. When the rover station index is set to Any, the rover receiver will accept base data from any base. If you set the rover station index to match the same number as the base station index, the rover will accept data only from a base with the same station index.
The base station index number is automatically generated according to the controller serial number. To limit the chance of multiple base receivers transmitting the same station index, different controllers default to different numbers, which means there is less chance that you accidentally receive corrections from the wrong base.
The rover station default index value is Any. If you know your base station index, and you want to connect to only that base, make sure that you set the appropriate station index for the rover.
If the Prompt for station check box is selected, a list of base stations on your radio frequency appears when you start the survey.

Satellite differential
When the radio link is down in a real-time survey, the receiver can track and use signals from SBAS or OmniSTAR.
Logging device
With survey types that involve postprocessing, set the Logging device to be either the receiver or controller.

Note – The Geo7X and GeoXR controllers always log to the controller.

Logging interval
To define the logging interval, enter a value in the Logging interval field. The base and rover logging intervals must correspond to (or be multiples of) each other.
When using an RTK and Infill survey type, the Logging interval is for the infill session only.
When using an RTK and Data logging survey type, the Logging interval should be the same for each receiver - typically 5 seconds. The RTK interval remains at 1 second.

Auto file names
To define the logging file name, clear the Auto file names check box and then enter the file name in the Logging file name field.

Log data in RTK mode
Select this option to log raw data in the RTK part of an RTK & infill survey type. Use this option if you want postprocessed data stored as a backup to your RTK survey. When this option is selected, switching between Infill and RTK modes does not suspend logging.

Elevation mask
You must define an elevation mask below which satellites are not considered. For kinematic applications, the default of 10° is ideal for both the base and rover.
For differential surveys where the base and rover are separated by more than 100 kilometers, Trimble recommends that the base elevation mask be lower than the rover setting by 1° per 100 kilometers of separation between the base and rover. Generally, the base elevation mask should be no lower than 10°.

PDOP mask
Define a PDOP mask for the rover. When the satellite geometry goes above the set PDOP mask, the General Survey software issues high PDOP warnings, pauses the time to initialize counter (PPK surveys), and suspends the measurement of a FastStatic point. Initialization and measurement resumes when the PDOP drops below the mask. The default value is 6.

GNSS signal tracking
GNSS signals tracked by the rover receiver must also be tracked by the base receiver.
Note –

- **If you enable tracking of satellite signals that are not being tracked by the base or contained in the RTK messages coming from the base, then those signals will not be used in RTK at the rover.** The rover uses battery power when tracking those signals. To save power, enable only those signals available in the base data you are going to use. For example, the RTCM v2.3 format does not support L5 signals, so if you enable L5 in the rover but receive RTCM v2.3 from the base, the L5 signal will not be used in RTK at the rover even though the rover is tracking it.

- **GNSS surveys must contain either GPS or BeiDou observations.** If you disable GPS in a GNSS survey, BeiDou is automatically enabled.

- **GNSS receiver firmware 5.10 or later is required to perform a survey with GPS disabled.**

GPS

The GPS check box is available for RTCM RTK single base or multistation surveys using RTCM 3.2 (MSM) format, CMRx format rovers, and postprocessed surveys. To disable the use of GPS in those surveys, clear the GPS check box. If GPS signal tracking is disabled, BeiDou signal tracking is automatically enabled because surveys must contain either GPS or BeiDou data. The xFill check box is not available if you turn off GPS signal tracking.

If you disable GPS at the rover for RTK you can use either the CMRx or RTCM v3.2 MSM broadcast format. Disabling GPS at the base can only be done for the RTCM v3.2 MSM broadcast format. For CMRx transmission from the base, GPS must remain enabled even though GPS can be disabled at the rovers that are using that CMRx base.

The **Use L2e** check box is read-only.

For real-time surveys where the base data contains L2C observations, select the **GPS L2C** check box. Use this option only when the base receiver can track L2C.

GLONASS

For real-time surveys where the base receiver and the rover receiver can track GLONASS signals, select the **GLONASS** check box in the **Rover options** and the **Base options** screens.

You can use this setting to track GLONASS satellites at the rover even if the base receiver is not tracking GLONASS. However, the satellites will not be used in the RTK processing.

For postprocessed surveys where the base receiver and rover receivers can track the GLONASS signal, select the **GLONASS** check box if you want to use the GLONASS observations.

L5

For real-time surveys where the base receiver and the rover receiver can track L5 signals, select the **L5** check box.

Use this option only when the base receiver can track and transmit L5, and the broadcast format is set to CMRx or RTCM RTK 3.2 (MSM).

Galileo

For real-time surveys where the base receiver and the rover receiver can track Galileo signals and the broadcast format is set to CMRx or RTCM RTK 3.2 (MSM), or if you intend to use Galileo in an RTX survey, select the **Galileo** check box.
For postprocessed surveys where the base receiver and rover receivers can track Galileo signals, select the Galileo check box if you want to use the Galileo satellite observations.

Note –
- You can log Galileo satellite data only to the receiver memory.
- If you enable Galileo tracking, the satellites will be used in the solution when they are healthy.
- To track Galileo signals you must also track GPS signals. If you disable GPS signal tracking, the Galileo check box is not available and Galileo signal tracking is disabled.

QZSS

For real-time kinematic surveys where the base receiver and the rover receiver can track QZSS signals and the broadcast format is set to CMRx or RTCM RTK 3.2 (MSM), select the QZSS check box. You can use this setting to track QZSS satellites at the rover even if the base receiver is not tracking QZSS satellites. However, the satellites will not be used in the RTK processing.

To fall back to QZSS SBAS positioning if your RTK radio link goes down, select SBAS in the Satellite differential field, and select the QZSS option. The QZSS option is only available if you are using CMRx as your RTK Broadcast format.

For postprocessed surveys where the base receiver and rover receivers can track the QZSS signals, select the QZSS check box if you want to use the QZSS satellite observations. This sets up the GNSS receivers to track the QZSS signals and include the signals in the logged data.

For real-time differential surveys where the rover can track the QZSS signals, select SBAS in the Broadcast format field, and select the QZSS option. This enables the rover receiver to track the QZSS satellite and, if you are within the valid QZSS differential network, to use the QZSS SBAS differential corrections in the real-time differential survey.

Note –
- You can log the QZSS satellites data only to the receiver memory.
- Both the base and rover receivers must have v4.61 firmware or later installed to track QZSS satellites in a RTK survey.

BeiDou

For real-time surveys where the base receiver and the rover receiver can track BeiDou signals, select the BeiDou check box.

For postprocessed surveys where the base receiver and rover receivers can track BeiDou signals, select the BeiDou check box if you want to use the BeiDou satellite observations. This sets up the GNSS receivers to track the BeiDou signals and include the signals in the logged data.

Note –
- BeiDou satellites can be used in RTK surveys only if you are using a receiver that has firmware version 4.80 or later. Although logging of BeiDou satellites was available in earlier firmware versions, it is highly recommended that for postprocessed surveys you also use a receiver that has firmware version 4.80 or later.
- To use BeiDou in a CMR RTK survey, you must use CMRx as the broadcast format.
- To use BeiDou in an RTCM RTK survey, select RTCM RTK as the broadcast format for the rover, and RTCM RTK 3.2 for the base broadcast format.
In a logging survey (Fast static, PPK, RTK, and logging), BeiDou can be used only if logging to the receiver.

When BeiDou signal tracking is enabled in an SBAS differential survey, the BeiDou SVs are used to augment the solution if their corrections are available.

NavIC

For FastStatic surveys where the base and rover receivers can track IRNSS/NavIC signals, select the NavIC check box.

Note – NavIC data can only be logged to the receiver. As NavIC satellites are tracked on L5 only they are not included in the point timers which rely on dual-frequency data.

Auto-tolerance

In an RTK survey, when you select the *Auto tolerance* check box, the software calculates horizontal and vertical precision tolerances that meet the GNSS receiver’s RTK specifications for the baseline length you are measuring. If you want to enter your own precision tolerances, clear this check box.

When "Store RTK initialized only" is enabled, only Initialized RTK solutions that meet the precision tolerances can be stored. Uninitialized solutions that meet the precision tolerances cannot be stored.

When "Store RTK initialized only" is not enabled, both RTK Initialized and Uninitialized solutions that meet the precision tolerances can be stored.

To change the precision level at which point storage is acceptable, clear the *Auto tolerance* check box and enter the values that you want to use.

xFill technology

Trimble xFill® technology leverages a worldwide network of Trimble reference stations to bridge communication outages via satellite-delivered correction data.

When using a GNSS receiver that supports xFill, select the xFill option to continue surveying during base data outages for up to 5 minutes. Note that the xFill solution precision will degrade over time.

When using a receiver that has a subscription to the Trimble Centerpoint RTX correction service, select the xFill option to use xFill-RTX and continue surveying during base data outages indefinitely. When the xFill precision estimates have increased to the level of the RTX precision estimates, the receiver transitions from an RTK-based xFill position solution to using an RTX position solution called xFill-RTX. The xFill-RTX position solution suffers no continuing degradation of precision over time. The XFill-RTX solution is brought into terms with the RTK base station by the rover receiver.

xFill correction data is based on a global model aligned to WGS84. This data is used when the RTK radio link from the base station is lost. To achieve optimal positioning performance during xFill operation, use RTK base station coordinates that are as close as possible to the true WGS84 coordinates for the base station point.

If xFill is not ready, the icon in the status bar is 🛠️. When xFill is ready the xFill ready field shows Yes in the Rover data link screen and the status bar icon changes to 🛠️. If you lose RTK corrections, xFill
takes over and the status bar icon changes to 🗼. Regaining RTK base data reception causes a switch back to RTK and the status bar icon returns to 🗼.

Once RTX has converged the xFill-RTX ready field shows Yes in the Rover data link screen. When the receiver transitions to xFill-RTX positioning, the status bar icon changes to 🗼.

Note –
- To use this option, your GNSS receiver must support xFill.
- xFill is not available if OmniSTAR has been selected or if GPS signal tracking has been disabled.
- Using xFill with receiver firmware earlier than version 4.80 requires the WGS84 coordinates of your RTK base to be accurate to within 1 meter of the correct WGS84 coordinate of that base point. When establishing a field base station using the Here key in Trimble Access, the required accuracy of the base coordinates may be achieved when the position is augmented with SBAS. If using xFill with network RTK such as VRS™, subscribers should check with their network administrator that the network is providing base coordinates and correction data in a global reference frame aligned with ITRF2008 or WGS84.
- When measuring a point in xFill, the precision estimates continue to increase, and cannot converge until xFill-RTX positioning begins. During xFill the best position is the single measurement at the beginning of the occupation. For this reason, any point measured when using xFill technology prior to the transition to xFill-RTX will become acceptable after 1 second. The Occupation time and Number of measurements settings in Options are overridden by the 1 second rule during xFill mode.
- If you are using xFill-RTX and have a CenterPoint RTX subscription based on hourly blocks purchased for the service, an "End RTX tracking to stop subscription timer?" message appears when you end the survey. Select Yes to disable the RTX SV tracking in the receiver. When you start a new survey using the RTX service, you will need to wait for the RTX solution to re-converge before you can use xFill-RTX. If you wish to start another survey in a relatively short period of time after ending the current survey, and you don’t want to wait for the RTX solution to re-converge, select No. Selecting No means your RTX subscription will continue to use time even though you are not in a survey, but the next survey will start with a converged solution if RTX and GNSS tracking is maintained between surveys.
- Trimble Access continues storing RTK vectors and all points are measured relative to the same RTK coordinate system.
- xFill is only available for areas covered by the RTX broadcast satellite. For more information go to www.trimble.com.
- When using xFill, the SBAS status screen shows the current Correction satellite name. To select a different satellite, tap DataLnk to go to the Rover data link screen, tap RTX SV and then select the required satellite from the list. Alternatively, select Custom and then enter the frequency and bit rate to use. You can change the correction satellite at any time; changing the correction satellite does not require restarting the survey. Changes you make to the settings are used the next time you start a survey.
Tilt

Select the *Tilt* option when using a GNSS receiver with an in-built tilt sensor so that the *Tilt warnings* and *Tilt auto-measure* options are available when you define the style for a *Topo point*, *Rapid point*, or *Compensated point*. The Tilt option setting also makes the Tilt warnings option available when you define the style for an *Observed control point* or *Continuous points*.

Note – The *Compensated point measurement method is not available in the Measure screen if the Tilt option is turned off.*

Data link options

The General Survey software provides a *Real-Time Kinematic* survey style. Real-time kinematic surveys use a *data link* to send observations or corrections from the base station to the rover. The rover then calculates its position in real time.

The following types of data link can be configured:

<table>
<thead>
<tr>
<th>Select</th>
<th>If you are using</th>
<th>For more information, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio</td>
<td>an internal or external radio</td>
<td>Configuring a radio data link</td>
</tr>
<tr>
<td>Internet connection</td>
<td>an external modem or a Trimble internal modem for a mobile Internet connection</td>
<td>Configuring an Internet data link</td>
</tr>
<tr>
<td>Dial-in</td>
<td>an external modem or Trimble internal modem for a circuit-switched dial-in connection</td>
<td>Configuring a dial-in data link</td>
</tr>
</tbody>
</table>

Measurement method options

As part of configuring the survey style for a GNSS survey, you can configure the parameters for the measurement methods you will use during the survey.

Auto point step size

Sets the increment size for automatic point numbering. The default is 1, but you can use larger step sizes and negative steps.

Quality control

You can store quality control information with each point measurement except compensated points. Options may include *QC1*, *QC1 & QC2*, and *QC1 & QC3*, depending on the type of survey.

Quality control 1: DOP and Time

Number of satellites (minimum for the occupation and number at time of storage), Flag for Relative DOPs (or not, used for legacy firmware that produced RDOP when static), DOP (maximum for duration of occupation), DOP at time of point storage, RMS (legacy systems only, in millicycles, this
is from instant before going static to show roving environment, not a converged static reading)
Number of GPS positions used in the occupation (this is the number of epochs within precision
tolerance observed), Horizontal standard deviation and Vertical standard deviation field are unused
(set to null), Start GPS week (the GPS week when you hit Measure), Start GPS time in seconds (the
GPS second of week when you hit Measure), End GPS Week (the GPS week the point was stored),
End GPS time in seconds (the GPS second of week when the point was stored), Monitor Status (not
used, will be null or not visible), RTCMAge (age of corrections used in RTK solution), Warnings (which
warning messages were issued during the occupation or in effect when the point was stored). All
values at 1-sigma level, including horizontal and vertical precision estimates.

Quality control 2: Variance/Covariance matrix of the RTK solution

Error scale (added trace of covariance matrix divided by PDOP, used to convert DOPs into precisions
in legacy systems), VCV xx, VCV xy, VCV xz, VCV yy, VCV yz, VCV zz (these are all a-posteriori
variances from the stored epoch of the RTK solution), Unit Variance (standard error of unit weight,
always set to 1.0 for HD-GNSS, not available in some legacy systems). All values at 1-sigma level,
including horizontal and vertical precision estimates.

Quality control 3: Error ellipse of RTK solution

This is in local tangent plane and is calculated directly from VCVs using standard textbook formulae.
Sigma north (standard deviation in the north component), Sigma east (standard deviation in the
east component, Sigma up (standard deviation in the Up or height component), Covariance east-
north (measure of the correlation between the east error and the north error), Semi major axis
length of error ellipse in meters, Semi minor axis length of error ellipse in meters, Orientation from
north of error ellipse, Unit variance of solution. All values at 1-sigma level, including horizontal and
vertical precision estimates.

Auto store point

Select the *Auto store point* check box to automatically store the point when the preset occupation
time and precisions have been met.

This check box does not appear in the Rapid point measurement options because rapid points are
always stored automatically.

Occupation time and number of measurements

The *Occupation time* and *Number of measurements* together define the time that the receiver is
static while measuring a point. The criteria for both must be met before the point can be stored. The
Occupation time defines the length of clock time for the occupation. The *Number of measurements*
defines the number of valid sequential GNSS measurement epochs that meet the currently
configured precision tolerance that must occur during the period of the occupation time. When the
Occupation time and *Number of measurements* criteria have been met, *Store* is available.
Alternatively, if *Auto store point* is enabled, the point is stored automatically.

Note – *For compensated points and observed control points measured during an RTK survey, the
horizontal and vertical precisions must also be satisfied before the point can be stored.*

If a point is stored manually when the precision tolerances are not met, the number of
measurements that meet the precision criteria will be zero, and this is what will appear in the point
record in *Review job*.

The requirement for sequential epochs that meet the precision criteria means the occupation
counters will be reset if the precision goes outside the tolerances at any time during the occupation.
In an RTK survey, the RTK engine in the GNSS receiver converges on a solution during the occupation and it is this converged solution that is saved in the General Survey job file when the point is stored.

In a FastStatic survey, the default occupation times are satisfactory for most users. If you change an occupation time, choose a setting according to the number of satellites being tracked by that receiver.

Note – Changing the occupation times directly affects the outcome of a FastStatic survey. Any changes should increase this time rather than decrease it. If you do not record enough data, the points may not be successfully postprocessed.

Auto tolerance

In an RTK survey, when you select the *Auto tolerance* check box, the software calculates horizontal and vertical precision tolerances that meet the GNSS receiver’s RTK specifications for the baseline length you are measuring. If you want to enter your own precision tolerances, clear this check box.

When "Store RTK initialized only" is enabled, only Initialized RTK solutions that meet the precision tolerances can be stored. Uninitialized solutions that meet the precision tolerances cannot be stored.

When "Store RTK initialized only" is not enabled, both RTK Initialized and Uninitialized solutions that meet the precision tolerances can be stored.

To change the precision level at which point storage is acceptable, clear the *Auto tolerance* check box and enter the values that you want to use.

Tilt settings

When using a GNSS receiver with an in-built tilt sensor, you can select:

- *Tilt auto-measure* to auto-measure points when the pole is within a specified *Tilt tolerance*
- *Tilt warnings* to prompt a warning when the pole is outside a specified *Tilt tolerance*

Tip - To enable these options, select *Survey Styles / Rover options* and then select *Tilt*.

Auto abandon

Select *Auto abandon* to abandon and restart the measurement process. When selected, points measured using a GNSS receiver with an in-built tilt sensor that experience excess tilt, or, for all receivers, excess movement, during the measurement process will be abandoned and the measurement process restarted.

HDR

This check box appears only if you are using a V10 imaging rover. For more information, see HDR imaging.

Store low latency positions

This check box only appears in the Continuous topo measurement method options when you do not have Trimble RTX or xFill enabled.
When you select the **Store low latency positions** check box, the measurements are made by the receiver in low latency mode. Low latency is more suitable when using continuous topo with distance based tolerances.

When **Store low latency positions** is not enabled, measurements from the receiver are synchronized on the epoch resulting in slightly more accurate positions, and is more suitable when using continuous topo with time-based tolerances.

Tip - If using Continuous topo as a static test to check the quality of measured positions make sure **Store low latency positions** is not enabled.

PP initialization times

If you have configured a PP Kinematic survey type, the PP initialization times screen appears in the survey style settings list.

Select the **PP initialization times** survey style option to define initialization times. Generally the default settings are appropriate.

In a postprocessed survey, collect enough data during initialization so that the postprocessor can successfully process it. Recommended times are as follows.

<table>
<thead>
<tr>
<th>Initialization method</th>
<th>4 SVs</th>
<th>5 SVs</th>
<th>6+ SVs</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1/L2 on-the-fly initialization</td>
<td>N/A</td>
<td>15 min</td>
<td>8 min</td>
</tr>
<tr>
<td>L1/L2 new point initialization</td>
<td>20 min</td>
<td>15 min</td>
<td>8 min</td>
</tr>
<tr>
<td>Known Point initialization</td>
<td>at least four epochs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note –
- The time to initialize counters are paused when the PDOP of the satellites being tracked exceeds the PDOP mask set in the survey style being used. The counters resume when the PDOP falls below the mask.
- You cannot initialize if the PDOP is greater than 20.

WARNING - Reducing any of these times can affect the outcome of a postprocessed survey.

Minimum L1/L2 satellites required for on-the-fly initialization

The number of satellites required depends on whether you are using GPS satellites only, BeiDou satellites only, or a combination of GPS, BeiDou, GLONASS, Galileo and QZSS satellites. The following table summarizes the minimum requirements for on-the-fly initialization.

<table>
<thead>
<tr>
<th>Satellite systems</th>
<th>Required satellites</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS only</td>
<td>5 GPS</td>
</tr>
<tr>
<td>GPS + QZSS</td>
<td>4 GPS + 1 QZSS</td>
</tr>
<tr>
<td>GPS + GLONASS</td>
<td>4 GPS + 2 GLONASS</td>
</tr>
<tr>
<td>GPS + BeiDou</td>
<td>4 GPS + 2 BeiDou</td>
</tr>
<tr>
<td>Satellite systems</td>
<td>Required satellites</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>GPS + Galileo</td>
<td>4 GPS + 2 Galileo</td>
</tr>
<tr>
<td>BeiDou only</td>
<td>5 BeiDou</td>
</tr>
<tr>
<td>BeiDou + GPS</td>
<td>4 BeiDou + 2 GPS</td>
</tr>
<tr>
<td>BeiDou + GLONASS</td>
<td>4 BeiDou + 2 GLONASS</td>
</tr>
<tr>
<td>GLONASS only</td>
<td>N/A</td>
</tr>
<tr>
<td>Galileo only</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Minimum L1/L2 satellites required to maintain initialization, produce positions, and for new point initialization

After initialization, a position can be determined and the initialization can be maintained with one satellite less than the number required to initialize. If the number of satellites drops below this number, the survey must be reinitialized.

The number of satellites required for new point initialization depends on whether you are using GPS satellites only, BeiDou satellites only, or a combination of GPS, BeiDou, GLONASS, Galileo and QZSS satellites.

The following table summarizes the requirements.

<table>
<thead>
<tr>
<th>Satellite systems</th>
<th>Required satellites</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS only</td>
<td>4 GPS</td>
</tr>
<tr>
<td>GPS + QZSS</td>
<td>3 GPS + 1 QZSS</td>
</tr>
<tr>
<td>GPS + GLONASS</td>
<td>3 GPS + 2 GLONASS</td>
</tr>
<tr>
<td>GPS + BeiDou</td>
<td>3 GPS + 2 BeiDou</td>
</tr>
<tr>
<td>GPS + Galileo</td>
<td>3 GPS + 2 Galileo</td>
</tr>
<tr>
<td>BeiDou only</td>
<td>4 BeiDou</td>
</tr>
<tr>
<td>BeiDou + GPS</td>
<td>3 BeiDou + 2 GPS</td>
</tr>
<tr>
<td>BeiDou + GLONASS</td>
<td>3 BeiDou + 2 GLONASS</td>
</tr>
<tr>
<td>GLONASS only</td>
<td>N/A</td>
</tr>
<tr>
<td>Galileo only</td>
<td>N/A</td>
</tr>
</tbody>
</table>

After initialization, the survey mode changes from *Not initialized* to *Initialized*. The mode remains *Initialized* if the receiver continuously tracks the minimum number of satellites. If the mode changes to *Not initialized*, you must reinitialize the survey.

Note – The QZSS system operates in the same time-base as GPS and therefore is included in the counters as another GPS satellite.
Automatically connecting to a GNSS receiver

By default, the Trimble Access software automatically attempts to connect to the GNSS receiver as soon as you start the software.

Configuring auto connect settings

To configure the auto-connect options, do one of the following:

- Tap the auto-connect icon in the status bar before you connect to an instrument.
- From the Trimble Access menu, tap Settings and then select Connect / Auto connect.

If you only connect to a Trimble GNSS receiver, speed up the automatic connection time by clearing the check boxes to permanently disable auto connect for conventional instruments.

If the auto connect icon displays multiple icons and a red x, then auto connect has been disabled for all instrument groups.

In the Auto connect options screen, tap Bluetooth to go to the Bluetooth settings screen.

You can also configure wireless connections from Settings. From the Trimble Access menu tap Settings and then select Connect and select Bluetooth.

Connecting to the receiver

When the software is trying to automatically connect to the GNSS receiver, the auto-connect icon flashes. There is a different icon for each instrument group. If you have enabled auto connect for Trimble GNSS receivers only, then only a Trimble GNSS receiver icon flashes.

The software will only attempt to auto-connect to the currently configured receiver for the current mode: Rover mode or Base mode (see GNSS functions).

- If the software is in Rover mode, it will attempt to connect to the receiver configured in the Connect to GNSS rover field in the Bluetooth settings screen.
- If the software is in Base mode, it will attempt to connect to the receiver configured in the Connect to GNSS base field in the Bluetooth settings screen.
- If there is no receiver configured in the appropriate field in Bluetooth settings, then the software will attempt to auto-connect to a Trimble GNSS receiver on the serial port of the controller; and if a receiver is detected it will be treated as the receiver you wish to use in the current mode.
- The flashing icon, or the yellow highlight on the GNSS Functions screen, shows the mode which the software is currently in.

It can take up to 15 seconds to automatically connect to the receiver, depending on the number of instrument groups enabled in the Auto connect options screen.

You do not have to wait for auto connect to connect to your receiver. To force a connection, select the survey style and start the survey at any time.
Setting up the equipment for a rover receiver

This section describes how to assemble the hardware at the rover receiver for a real-time and postprocessed kinematic (PP kinematic) survey. It describes the steps for a Trimble integrated GNSS receiver.

To set up a rover Trimble integrated GNSS receiver:

1. Mount the receiver onto a range pole. Power for the receiver is supplied by the internal battery in the receiver.
2. Attach the controller to the holder. See Trimble CU controller.
3. Connect the controller holder to the range pole.
4. Turn on the receiver.
5. Turn on the controller. By default, the General Survey software automatically connects to the receiver.

 Note – In a postprocessed survey you may find it useful to use a bi-pod to hold the range pole while taking measurements.

To configure the rover receiver in the Trimble Access software, see Rover and base options.

Measuring antenna heights

The following describes how to measure the height of an antenna mounted on a range pole when the Measured to field is set to Bottom of antenna or Bottom of antenna mount. With a fixed height range pole, the height is a constant value.
Trimble R10 receiver

Refer to the following diagram where (1) is the Trimble R10 receiver, (2) is the bottom of the antenna mount, (3) is the bottom of the quick release, (4) is the corrected height to the APC from the bottom of the pole.

The following describes how to measure the height of an Trimble R10 receiver using the lever on the R10 extension, when the R10 is mounted on a tripod.
Refer to the following diagram where (1) is the Trimble R10 receiver, (2) is the lever of the R10 extension, (3) is the corrected height to the APC from the ground mark and (4) is the uncorrected height.

Trimble integrated GNSS receiver

Refer to the following diagram where (1) is the Trimble GNSS receiver, (2) is the corrected height to APC and (3) is the uncorrected height of 1.80m.

If this receiver is mounted on a tripod, measure the height to the bottom of the groove between the gray base and the white top of the antenna, and select Center of bumper in the Measured to field.

Tip - If you are using a fixed height tripod, you can measure the height to the bottom of the antenna housing and select Bottom of antenna mount in the Measured to field.
Zephyr antenna

Refer to the following diagram where (1) is the Zephyr antenna, (2) is the corrected height to APC and (3) is the uncorrected height.

If this antenna is mounted on a tripod, measure the height to the top of the notch on the side of the antenna.

Zephyr geodetic antenna

If this antenna is mounted on a tripod, measure the height to the bottom of the notch on the side of the antenna.

Micro-centered L1/L2 antenna

Refer to the following diagram where (1) is the Micro-centered antenna, (2) is the corrected height to APC and (3) is the uncorrected height.

If this antenna is mounted on a tripod, measure the height to the bottom of the plastic housing. Enter this value in the *Antenna height* field and set the *Measured to* field to *Bottom of antenna*.

Measuring the height of an antenna when using a ground plane

If the Micro-centered antenna (or a Compact L1/L2 antenna) has a ground plane measure to the underside of the notch in the ground plane.
Refer to the following diagram where (1) is the Micro-centered L1/L2 antenna, (2) is the ground plane, (3) is the underside of the notch and (4) is the top of the notch.

Tip - Measure the height to three different underside notches around the perimeter of the ground plane. Then record the average as the uncorrected antenna height.

Tornado antenna

Refer to the following diagram where (1) is the Tornado antenna, (2) is the corrected height to APC and (3) is the uncorrected height.

If this antenna is mounted on a tripod, measure the height to the join between the gray and white plastics on the antenna.
Trimble Geo7X and Trimble GeoXR

Refer to the following diagram where (1) is the bottom of the receiver, (2) is the electrical phase center and (3) is the APC.

When using the Geo7X/GeoXR mounted on a monopole, select *Bottom of monopole bracket* as the Measure to method.

Note –
- The Geo7X can be used with the version one monopole bracket only if it does not have the laser rangefinder module attached. The Geo7X can be used with the version 2 monopole bracket with or without the laser rangefinder module attached.
- If the Geo7X/GeoXR is mounted on the version 1 monopole bracket, the distance from the bottom of the monopole bracket to the APC (3) is 0.095 m. On the version 2 monopole bracket, the distance from the bottom of the monopole bracket to the APC (3) is 0.128 m.

Antenna.ini file

The General Survey software includes an integrated Antenna.ini file that contains a list of antennas that you can choose from when creating a survey style. You cannot edit this list in the General Survey software. However, if you want to shorten the list or add a new antenna type, you can edit and transfer a new Antenna.ini file.

To edit the antenna.ini file, use a text editor such as Microsoft Notepad. Edit the *General Survey* group, and transfer the new Antenna.ini file to the General Survey software, using Trimble’s Data Transfer utility.

Note – When you transfer an Antenna.ini file, it overwrites any existing file of that name. The information in this file is also used in preference to the antenna information built into the General Survey software.

Base receiver setup

Note – Use the information in this section if you will set up your own receiver as a base receiver.

This topic has the following sections:
- Base station coordinates
Setting up the equipment for a real-time survey
Setting up the equipment for a postprocessed survey
Setting up the equipment for a real-time and postprocessed survey
Starting a base survey
Ending a base survey

To configure the base receiver in the Trimble Access software, see Rover and base options and Configuring a radio data link.

Base station coordinates

When you set up a base, it is important to know the WGS-84 coordinates of the point as accurately as possible.

Note – Every 10 m of error in a base station coordinate can introduce a scale error on every measured baseline of up to 1 ppm.

The following recognized methods, listed in descending order of accuracy, are used to determine base station WGS-84 coordinates:

- Published or precisely-determined coordinates.
- Coordinates computed from published or precisely-determined grid coordinates.
- Coordinates derived using a reliable differential (RTCM) broadcast based on published or precisely-determined coordinates.
- An SBAS position generated by the receiver. Use this method if no control exists for the location and you have a receiver that tracks SBAS satellites.
- An autonomous position generated by the receiver. Use this method for real-time surveys in a location where no control exists. Trimble strongly recommends that you calibrate any jobs started by this method on a minimum of four local control points.

Tip - In the U.S.A., you can regard NAD83 geodetic coordinates as equivalent to WGS-84 coordinates.

Note – If the keyed in WGS-84 coordinates differ from the current autonomous position generated by the receiver by more than 300 m, a warning message appears.

For more information about entering base station coordinates, see Starting a base survey.

Survey integrity

To preserve the integrity of a GNSS survey, consider the following:

- When you start subsequent base receivers for a particular job, make sure that each new base coordinate is in the same terms as the initial base coordinate.

 Note – Within a job, only use an autonomous position to start the first base receiver. An autonomous position is equivalent to an assumed coordinate in conventional surveying.

- Coordinates published by a reliable source and coordinates determined by control surveys should be in the same system.

- If subsequent base coordinates are not in the same terms, regard observations from each base as a separate job. Each needs a separate calibration.
- Because measured real-time kinematic points are stored as vectors from the base station, not as absolute positions, the origin of the survey must be an absolute WGS-84 position from which the vectors radiate. If other base stations are subsequently set up on points measured from the original base station, all vectors are resolved back to the original base station.

- It is possible to start the base on any kind of coordinates, for example, grid or local ellipsoid coordinates. However, in a real-time survey, the General Survey software must store a WGS-84 position for the base when a rover survey is started. It is this position that is held fixed as the origin of the network.

When you start a rover survey, the General Survey software compares the WGS-84 position broadcast by the base receiver with points already in the database. If a broadcast point has the same name as a point in the database, but different coordinates, the General Survey software uses the coordinates that are in the database. These coordinates were keyed in or transferred by you, so it assumes that you want to use them.

If a point in the database has the same name as the one being broadcast by the base, but the coordinates are NEE or local LLH rather than WGS-84 coordinates, the General Survey software converts this point to WGS-84 coordinates using the current datum transformation and projection. It then uses these as the base coordinates. If no datum transformation and projection are defined, the broadcast WGS-84 point is automatically stored and used as the base.

The following diagram shows a survey using two base stations.

In this survey, Base station 2 was first surveyed as a roving point from Base station 1.

Note – Base stations 1 and 2 must be linked together by a measured baseline, and Base station 2 must be started with the same name that it had when it was surveyed as a roving point from Base station 1.
Setting up the equipment for a real-time survey

This section describes how to assemble the hardware components at the base receiver for a Real-time kinematic (RTK) or Real-time differential (RT differential) survey.

Using a Trimble modular GNSS receiver

To set up a base receiver for a real-time survey using a Trimble modular GNSS receiver:

1. Set the Zephyr antenna over the ground mark using a tripod, a tribrach, and a tribrach adaptor.
2. Use the tripod clip to hang the receiver on the tripod.
3. Connect the Zephyr antenna to the GNSS receiver port labeled "GPS". Use the GNSS antenna cable.

 Note – Instead of hanging the receiver on the tripod, you can place the receiver in its base case. Run the antenna cable out of the portal in the side of the base case to the antenna so that the case can stay closed while the receiver is running.

4. Assemble and erect the radio antenna.
5. Connect the radio antenna to the radio using the cable attached to the antenna.
6. Connect the radio to the GNSS receiver port 3. If you are using:

 - A Trimble radio, use the supplied cable.
 - A radio provided by a third party, use the appropriate cable.

 Note – For some third-party radios, a separate power supply is needed for the radio.

 CAUTION – Do not force plugs into the receiver ports. Align the red dot on the plug with the red line on the socket and then insert the plug carefully.
7. If external power is required, connect the power supply with a 0-shell Lemo connection to port 2 or port 3 on the receiver.
8. Connect the controller to the GNSS receiver port 1 using the 0-shell Lemo-to-Hirose cable.
9. Turn on the controller, then follow the instructions in Starting a base survey.

Setting up the equipment for a postprocessed survey

This section shows how to assemble the hardware components at the base receiver for a postprocessed kinematic, or a FastStatic survey.

Using a Trimble modular GNSS receiver

To set up the base receiver for a postprocessed survey:

1. Set the Zephyr antenna over the ground mark using a tripod, a tribrach, and a tribrach adaptor.
2. Use the tripod clip to hang the receiver on the tripod.
3. Connect the Zephyr antenna to the GNSS receiver port labeled "GPS". Use the GNSS antenna cable.
Note – Instead of hanging the receiver on the tripod, you can place the receiver in its base case. Run the antenna cable out of the portal in the side of the base case to the antenna so that the case can stay closed while the receiver is running.

CAUTION – Do not force plugs into the receiver ports. Align the red dot on the plug with the red line on the socket and then insert the plug carefully.

4. If external power is required, connect the power supply with a 0-shell Lemo connection to Port 2 or Port 3 on the receiver.
5. Connect the controller to the GNSS receiver port 1 using the 0-shell Lemo to 0-shell Lemo cable.
6. Turn on the controller, then follow the instructions in Starting a base survey.

Setting up the equipment for a real-time and postprocessed survey

To conduct a survey that uses both real-time and postprocessed techniques, follow the assembly instructions for real-time surveys. If the receiver has no memory (or has a limited memory), use a controller to store raw data at the base receiver.

Starting a base survey

To conduct a survey using a predefined survey style, make sure that the required job is open. The title of the main menu should be the current job name.

From the main menu, choose Measure and select a survey style from the list.

A Measure menu is generated. It displays items specific to the chosen survey style and includes the Start base receiver and measure options.

CAUTION – In a real-time survey, make sure that the radio antenna is connected to the radio before starting the base survey. If it is not, the radio will be damaged.

To start a base survey:

1. From the Measure menu, tap Start base receiver.

 • If the controller is connected to a receiver that was logging data, the data logging stops.
 • If the base survey requires an internet connection and one doesn’t already exist, the connection is established.
 • The first time that you use this survey style, the Style wizard prompts you to specify the equipment you are using.

 The style wizard customizes the chosen survey style, setting any parameters specific to the hardware.

 Note –

 • To correct a mistake when customizing a survey style, first complete the process and then edit the style.
 • When using Trimble GNSS receivers that do not have the UHF Transmit option, use an external radio at the base even if you use the internal radio at the rover.
 • You can use a Custom radio if the radio you have is not listed.

The Start base screen appears.
Note – When you start a survey, the General Survey software automatically negotiates the highest possible baud rate for communicating with the connected receiver.

2. Enter the base station name and coordinates. Use one of the following methods:
 - If WGS84 coordinates are known:

 Access the Point name field and enter the point name. Tap Key in.

 In the Key in point screen, set the Method field to Keyed in coordinates. Check that the coordinate fields are Latitude, Longitude, and Height (WGS84). If they are not, tap Options and change the Coordinate view setting to WGS84. Key in the known WGS84 coordinates for the base station, and tap Store.

 - If grid coordinates are known, and projection and datum transformation parameters are defined:

 Access the Point name field and enter the point name. Tap Key in.

 In the Key in point screen, set the Method field to Keyed in coordinates. Check that the coordinate fields are Northing, Easting, Elevation. If they are not, tap Options and change the Coordinate view setting to Grid. Key in the known grid coordinates for the base station, then tap Store.

 - If local geodetic coordinates are known and a datum transformation is defined:

 Access the Point name field and enter the point name. Tap Key in.

 In the Key in point screen, check that the coordinate fields are Latitude, Longitude, and Height (Local). If not, tap Options and change the Coordinate view setting to Local. Key in the known local coordinates for the base station, then tap Store.

 - If the coordinates of the point are unknown:

 In a real-time survey, to use either the current SBAS position (if tracked), or the current autonomous position derived by the GNSS receiver, access the Point name field and enter the point name. Tap Key in to access the Key in point screen. Tap Here and the current position is displayed. Tap Store to accept and store this position.

 Note – If you want an SBAS position, ensure the receiver is tracking an SBAS satellite by checking the SBAS icon is displayed on the status line when you tap Here. The receiver can take 120 seconds to lock on to SBAS. Alternatively, check the Observation class field before starting the base.

CAUTION – Within a job, only use an autonomous position (the Here softkey) to start the first base receiver.

Note –
 - If you carry out a real-time survey using RTCM 2.x corrections and use a base point name that is more than eight characters long, the name will be shortened to eight characters when it is broadcast.

 - If you carry out a real-time survey using RTCM 3.0 corrections, you must use a base point name (in upper case) that is within the range RTCM0000 to RTCM4095.

3. The Observation class field shows the observation class of the base point. For more information, see Storing points.

4. Enter values in the Code (optional) and Antenna height fields.

5. Set the Measured to field as appropriate.
6. In the Station index field, enter a value.
 This value is broadcast in the correction message, and must be in the range 0-31.
 Tip - Tap Scan to view a list of other base stations operating on the frequency you are using.
 The list shows the station index numbers of the other bases and the reliability of each. Choose a different station index number to those displayed.

7. If the receiver you are using supports transmission delays, the Transmission delay field appears. Choose a value depending on how many base stations you intend to use. For more information about transmission delays, see Operating several base stations on one radio frequency.

8. Tap Start.
 The base receiver starts to record data and transmit corrections in the format selected in the Survey Style.

9. Do one of the following:
 - If you are carrying out a real-time survey, the following message appears:
 Base started
 Disconnect controller from receiver
 Disconnect the controller from the base receiver but do not turn off the receiver. You can now set up the rover receiver.
 Note – For a real-time survey, check that the radio is working before leaving the equipment. The data light should be flashing.
 - If you are logging data in the controller, and/or you are uploading corrections to a remote server, the Base screen appears. It shows which point is being surveyed and the time that has elapsed since data logging started. Leave the Trimble controller connected to the base receiver and set up the rover using another Trimble controller.
 - If your base is operating as an internet server, the Base screen appears and in addition to the above, it shows the IP address that has been assigned to the base, as well as the number of rovers that are currently connected to the base.

Ending a base survey

When all rover surveys using your base are complete, return to the base, connect the controller to the base receiver and then select Measure / End GNSS base survey. If the controller was logging base data, tap End on the Base screen.

Operating several base stations on one radio frequency

In an RTK survey you can reduce the effects of radio interference from other base stations on the same frequency by operating your base station with a different transmission delay. This allows you to operate several base stations on one frequency.
The general procedure is as follows:

1. Check that you have the correct hardware and firmware.
2. Set up the equipment and start a survey at each base station, specifying a transmission delay and a station index number.
3. Start a rover survey and specify which base to use.

Hardware and firmware requirements

To operate several base stations on one frequency, you must use receivers that support the CMR+ or CMRx correction format.

All other base and rover receivers must be Trimble R / 5000 series GNSS receivers.

Note – Do not use transmission delays if you intend to use radio repeaters.

Starting the base with a transmission delay

When you use multiple base stations, you set the transmission delay for each base when you start the base survey. Each base must broadcast with a different transmission delay and station index number. The delays allow the rover to receive corrections from all of the base stations at once. The station index numbers let you select which base station to use at the rover.

Note – You can set the base radio transmission delay only when using Trimble R / 5000 series GNSS receivers. When you carry out surveys using different base stations in one job, make sure that the coordinates of the base stations are in the same coordinate system and are in terms of each other.

Before you start the base receiver, do the following:

1. Select the CMR+ or CMRx correction format. Select this in the survey style for both the base and the rover.
2. Set the over air baud rate in the radio to at least 4800 baud.

Note – If you use a 4800 over air baud rate you can only use two base stations on one frequency. Increase the over air baud rate if you want to increase the number of base stations on one frequency.

When you start the base survey, do the following:

1. In the *Station index* field, enter a value within the range 0-31. This number is broadcast in the correction message.

 Tip - You can configure the default station index number in the survey style. For more information, refer to *Station index*.

2. If the receiver you are using supports transmission delays, the *Transmission delay* field appears. Choose a value, depending on how many base stations you want to use. See the following table.
Table: No. of base stations and use of delays (in ms)

<table>
<thead>
<tr>
<th>No. of base stations</th>
<th>Base 1 (ms)</th>
<th>Base 2 (ms)</th>
<th>Base 3 (ms)</th>
<th>Base 4 (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Two</td>
<td>0</td>
<td>500</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Three</td>
<td>0</td>
<td>350</td>
<td>700</td>
<td>-</td>
</tr>
<tr>
<td>Four</td>
<td>0</td>
<td>250</td>
<td>500</td>
<td>750</td>
</tr>
</tbody>
</table>

For more information about starting the base survey, see Base receiver setup.

For information about starting the rover and selecting which station index to use, see Start the survey.

Swapping bases during a real-time rover survey

If you are using multiple bases on the same frequency, you can swap bases during the rover survey.

To swap bases, from the Measure menu, select Swap base receiver.

The Select base station screen appears. It shows all the base stations operating on the frequency you are using. The list shows the station index numbers of each base and the reliability of each. Tap the base you want to use.

Note – When you change to a different base, your OTF receiver automatically starts the initialization.

Wide-area RTK surveys

Wide-area RTK (WA RTK) systems, also called Network RTK systems, consist of a distributed network of reference stations communicating with a control center to calculate GNSS error corrections over a wide area. Real-time correction data is transmitted by radio or cellular modem to the rover receiver within the network area.

The system improves reliability and operating range by significantly reducing systematic errors in the reference station data. This lets you increase the distance at which the rover receiver can be located from the physical reference stations, while improving on-the-fly (OTF) initialization times.

The General Survey software supports broadcast formats from the following WA RTK solutions:

- FKP (RTCM)
- VRS
- RTCM3Net

To use a WA RTK system, first check that you have the necessary hardware and firmware.

Hardware requirements

All rover receivers must have firmware that support WA RTK. For details of availability, check the Trimble website or contact your local reseller.
Real-time correction data is provided by radio or cellular modem. For details about the delivery option for your system, contact your local reseller.

Configuring the survey style

Before you start a survey using a WA RTK system, configure the RTK survey style.

To select a WA RTK broadcast format:
1. From the Trimble Access menu, tap *Settings / Survey styles / <Style name> / Rover options*.
2. In the *Broadcast format* field, select one of the following options from the list:
 - *FKP (RTCM)*
 - *VRS (RTCM)*
 - *VRS (CMR)*
 - *RTCM3Net*

To store VRS vectors to the nearest Physical Base Station (PBS) in the VRS network, the VRS system must be configured to output the PBS information. If the VRS system does not output PBS data, VRS data must be stored as positions.

To select a radio solution:
1. In the survey style, select *Rover data link*.
2. In the *Type* field, select your radio from the list.

Note – If you are using a radio in a VRS system, you must select a two-way radio. You cannot use Trimble internal 450 MHz or 900 MHz radios.

RTK on demand

If you are using an Internet connection to send RTK data from the base to the rover, then you can use the General Survey RTK on demand functionality to control the amount of data broadcast from the base receiver. You can request the base station to send data only when you require it. This will reduce the amount of data received by your cellular phone and may reduce costs from your cellular network service provider.

The RTK on demand function requires an Internet connection at both the GNSS base station and the rover. The General Survey software must be at both the GNSS base station and the rover, or you must be connected to the Trimble VRS Now subscription service.

Once the RTK survey is running over an Internet connection, you can access the *RTK on demand* controls by tapping the 📫 icon in the status bar.

When the survey is started, General Survey will default to Play 🎧 mode. When in Play mode, RTK data will be streamed continuously.

If you tap the 🎧 softkey, your survey will go into Pause mode and data will only be streamed when required. General Survey will request data from the base station when initialization is lost, or when you choose to measure a point, or when you start continuous topo, or when you use the stakeout functionality. As soon as the receiver has regained initialization, or the survey task is complete, then General Survey will request the base station to stop streaming data.

Note – When in Pause mode, you cannot measure rapid points or fast fix points.
If you tap the softkey then your survey will go into Stop mode and no RTK data will be streamed. This can be used in situations where you do not wish to end your survey, but do not require the receiver to stay initialized until you are ready to start surveying again.

RTX correction service

If you have a Trimble receiver that supports Trimble RTX™ technology and has the appropriate subscription you can use the Trimble Centerpoint® RTX correction service.

The Trimble Centerpoint RTX correction service is a high-accuracy, precise point positioning (PPP) system that provides real-time centimeter positioning without the need for an RTK base station or VRS network.

Survey using satellite-delivered or Internet-delivered Trimble RTX corrections in open areas where terrestrial-based corrections are not available. When surveying over a great distance in a remote area, such as a pipeline or utility right of way, Trimble RTX technology eliminates the need to continuously move the base station or, when using satellite-delivered corrections, to maintain connection to cell coverage.

In typical conditions, the RTX convergence time is 30 minutes or less when static. The convergence time varies based on GNSS constellation health, level of multipath, and proximity to obstructions, such as large trees and buildings.

RTX QuickStart allows rapid re-convergence on a previously surveyed point or a known survey control point. RTX QuickStart typically converges in less than 5 minutes.

Performing an RTX survey

1. Create an RTX survey style with the broadcast format set to RTX (SV) or RTX (Internet).
2. If you select RTX (Internet), in the Rover options screen, in the Rover data link screen select the GNSS contact you have set up for the RTX Internet service. This GNSS contact must have the Use RTX (Internet) check box selected and the appropriate Mountpoint name selected. For more information, see Creating a GNSS contact for an Internet data link.
3. Start a survey using this survey style.
4. Select the appropriate tectonic plate. The list is filtered to show only those plates closest to your current position.

 When RTX (SV) signals are being received, the radio icon changes to an RTX icon , and RTX appears on the status line. Tap to see the RTX status.

 When data from the CenterPoint RTX correction service is being received via the Internet, the network connection icon appears.

 Wait for convergence. Convergence can take up to 30 minutes in typical conditions.
5. Once convergence has been gained you can begin surveying.
RTX QuickStart on a known point

1. Do one of the following:
 - During an RTX (SV) survey, tap \(\text{
 \text{QuickStart}} \) to view the RTX status screen and then tap \text{QStart}.
 - During an RTX (Internet) survey, from the \text{Instrument} menu tap \text{RTX status} and then tap \text{QStart}.

2. Set up the receiver on the known point and then enter the details for the point, or select it from the list.
 The known point used must be either an RTX measurement, or a point that when put through the current coordinate system, site calibration, and RTX-RTK Offset, resolves to the same terms as an RTX measurement. For more information, see \text{Combining RTK and RTX in the same job}.

3. Tap \text{Start}. The \text{Start} button appears only when RTX positions are being calculated.
 Wait for convergence. Convergence time is typically less than 5 minutes.

4. When the message "Convergence has been gained" appears, you can continue surveying.

\textbf{Note} –

- \text{Convergence times given are a guide only. Convergence may take longer in adverse environments.}
- \text{Although the RTX rover solution may have converged, it may not yet meet the precision tolerances for point measurement. You may need to remain at a point longer to meet the precision tolerances specified, as the RTX rover solution should converge more when the rover is in static mode. Precisions for surveys using the Trimble Centerpoint RTX service are very sensitive to environmental conditions such as multipath, ionosphere scintillation, and particularly tropospheric conditions and tree canopy.}
- \text{To change the precision level at which convergence is acceptable, clear the Auto tolerance check box in the Rover options screen and enter the values that you want to use.}
- \text{Coordinates measured in surveys using the Trimble CenterPoint RTX service are stored in the ITRF-2008 epoch 2005.0 reference frame. When you start an RTX survey, you must select a tectonic plate if you have not already done so for that job. The receiver uses the tectonic plate that you select to compute the ITRF 2008 epoch 2005.0 coordinates from ITRF 2008 current epoch coordinates used by the Trimble RTX network, using a tectonic plate motion model embedded in its firmware.}
- \text{You can use a site calibration to refine the transformation between the RTX reference frame and your local coordinate system.}
- \text{QuickStart points must be able to be expressed in terms of the RTX reference frame. This means that they have either been previously measured using the CenterPoint RTX correction service, or that there is a current precisely computed RTX to RTK offset in the job, or that the job has been site calibrated in terms of RTX.}
- \text{If you are using xFill-RTX and have a CenterPoint RTX subscription based on hourly blocks purchased for the service, an "End RTX tracking to stop subscription timer?" message appears when you end the survey. Select Yes to disable the RTX SV tracking in the receiver. When you start a new survey using the RTX service, you will need to wait for the RTX solution to re-converge before you can use xFill-RTX. If you wish to start another survey in a relatively short}
period of time after ending the current survey, and you don’t want to wait for the RTX solution to re-converge, select No. Selecting No means your RTX subscription will continue to use time even though you are not in a survey, but the next survey will start with a converged solution if RTX and GNSS tracking is maintained between surveys.

- To use the CenterPoint RTX correction service, the Trimble R10 receiver must have receiver firmware version 4.83 or later; the Trimble NetR9 Geospatial receiver must have receiver firmware version 4.92 or later.
- To process Trimble Access job files with RTX data in Trimble Business Center, you must have version 2.95 (32-bit) or 3.10 (64-bit) or later.
- In an RTX survey, the Reset button on the satellite plot/list screen resets SV tracking as well as RTX convergence. The Reset button on the RTX status screen resets the RTX convergence but not the satellite tracking.
- The RTX status screen shows the current Correction satellite name. To select a different satellite, tap Options and then select the required satellite from the list. Alternatively, select Custom and then enter the frequency and bit rate to use. Changes you make to the settings are used the next time you start a survey. You can change the correction satellite at any time; changing the correction satellite does not require restarting the survey.
- The Trimble RTX subscription expiry date is displayed in the Instrument / Receiver settings screen.
- Trimble RTX subscriptions which have been purchased as blocks of hours operate within a validity window, which is the start date and end date between which the number of hours/minutes purchased must be used.

For more information, go to www.trimble.com/positioning-services.

Combining RTK and RTX in the same job

All GNSS data within a single Trimble Access job must be in the same reference frame. This is the reference frame of the RTK base station(s) or network RTK reference frame used in the job.

The simplest way to combine RTK and RTX data in the same job is to perform the RTK survey in the RTX reference frame, which in Trimble Access is ITRF-2008 epoch 2005.0. This is done by setting up your RTK base on a point that has been measured precisely using CenterPoint RTX correction service, or is known precisely in that reference frame. You cannot combine RTX data and network RTK data in this manner unless the RTK network is broadcasting base data that is in the ITRF-2008 epoch 2005.0 reference frame.

Note – You cannot use a site calibration to combine RTX and RTK data since a site calibration creates a transformation from the single GNSS reference system to the single local reference system, not from one GNSS reference system to another. However, if you have combined RTX and RTK by setting up your RTK base on a precise RTX point, you could then calibrate the RTX/RTK data to a local reference frame.

Trimble Access allows RTK data that is not in terms of the RTX reference frame to be combined with RTX data in the same job by using an RTX-RTK offset. These offsets are computed from a precise RTK point and a precise RTX point in the same physical location, and that difference is applied to all measured RTX points to bring them into terms with the RTK data in the job. The raw RTX measurements are stored, and the offset is applied when viewing coordinates or before performing any operations on those RTX measurements such as cogo calculations and stakeout.
When performing a site calibration using RTX measurements when there is an RTX-RTK offset in the job, the offset is applied to bring the RTX measurements into terms with the RTK data before calculating the site calibration. Trimble recommends that you finalize a very precise RTX-RTK offset for the job before performing a site calibration using RTX measurements.

When an RTX-RTK offset is applied to a job, the precision estimates of the RTX measurements are inflated by the precision of the RTX-RTK offset using the propagation of variances principle. The precision of the latest offset in the job is applied to all displayed and stored RTX measurements in the job. When the offset is updated, the precision of the new offset is reapplied to all RTX point measurements in the job.

WARNING - Take great care to avoid changing the offset already in a job to a less precise offset, as this action may cause the precision of the points stored in the job to no longer meet the precision tolerances applied when the points were measured.

Computing an RTX-RTK offset

To compute an RTX-RTK offset, the Trimble R10 receiver must have receiver firmware version 4.83 or later. To import Trimble Access job files with RTX-RTK offsets into Trimble Business Center, you must have TBC version 2.99 (32-bit) or 3.30 (64-bit) or later.

1. From the main General Survey menu, tap **Measure** and then tap **RTX-RTK offset**.
2. In the **RTK point** field, select a point. This must be a point measured using RTK.
3. In the **RTX point** field, select or measure an RTX point. This must be a point measured using the CenterPoint RTX correction service.

 The offset is computed immediately when the two point fields are completed.
4. Review the results of the offset computation. If acceptable, tap **Store** to commit the offset to the job.

Note – The precision of the offset and therefore the precision of the RTX points reduced into the RTK reference frame depends on the precision of the measured RTK and RTX points used to compute that offset. You must use the most precise point measurements possible to compute the offset.

To remove an RTX-RTK offset, view the offset in the **RTX-RTK offset** screen and then tap **None**. Tap Yes to confirm. The value of the offset is changed to zero.

Satellite-based augmentation system (SBAS)

SBAS signals provide real-time, differentially corrected positions without the need for a radio link. You can use SBAS in real-time surveys when the ground-based radio link is down.

To use SBAS signals, in the **Rover options** screen of your survey style, set **Satellite differential** to SBAS. In real-time differential surveys, you can set the broadcast format to SBAS to always store SBAS positions without the need for a radio link.

For real-time differential surveys where the rover can track the QZSS signals, select **SBAS** in the **Broadcast format** field, and select the **QZSS** option. This enables the rover receiver to track the QZSS satellite and, if you are within the valid QZSS differential network, to use the QZSS SBAS differential corrections in the real-time differential survey.
When SBAS signals are being received, the radio icon changes to a SBAS icon, and in an RTK survey, RTK:SBAS is displayed on the status line.

In an SBAS survey, QC1 quality control information is available, while QC2 and QC3 are not available.

The availability of SBAS signals depends on your location. For example:

- WAAS is available in the Americas.
- EGNOS is available in Europe.
- MSAS and QZSS are available in Japan.

OmniSTAR differential correction service

OmniSTAR® is a wide-area differential GPS service provider. OmniSTAR correction signals are proprietary, are available worldwide, but are only supported by an OmniSTAR capable GNSS receiver and a subscription must be bought from OmniSTAR to receive a subscription authorization.

OmniSTAR signals provide real-time, differentially corrected positions without the need for a radio link. You can use OmniSTAR:

- for RT differential surveys
- for fallback in an RTK survey when the ground-based radio link is down

Subscription levels for OmniSTAR corrections include:

- OmniSTAR HP, G2 and XP - all three are displayed in Trimble Access as OmniSTAR HP
- OmniSTAR VBS - displayed in Trimble Access as OmniSTAR VBS

In an OmniSTAR survey, QC1 quality control information is available, while QC2 and QC3 are not available.

Note –

- For SBAS/OmniSTAR surveys, you must use a GNSS receiver that can track SBAS/OmniSTAR satellites.
- To track OmniSTAR satellites, start a survey using a style that specifies OmniSTAR as the Satellite Differential service. Once you end that survey, subsequent surveys will track OmniSTAR satellites until you start a new survey with a style that does not specify OmniSTAR for the Satellite differential.
- The OmniSTAR subscription expiry date is displayed on the OmniSTAR initialization screen or from the Instrument / Receiver settings screen.
- OmniSTAR is only available in the Trimble R7-GNSS with firmware 4.60 or later, and in the Trimble R10 receiver.
- To process Trimble Access job files with OmniSTAR data in Trimble Business Center, you must have version 2.70 or later.
- See your local Trimble distributor for more information.
OmniSTAR - RTK survey

To survey using RTK and OmniSTAR do this:

1. Create an RTK survey style with the satellite differential set to OmniSTAR. See Rover and base options.
2. Start an RTK survey using this survey style.
 The Select OmniSTAR Offset screen appears.
 To relate the OmniSTAR positions to the RTK positions, you must measure the OmniSTAR offset between an RTK measured point and the same position measured using OmniSTAR. Before the offset can be measured, you must wait for the OmniSTAR survey to converge.
 Tip - The following techniques enable you to survey without the convergence delay.
 - You can choose to measure the OmniSTAR offset later when the OmniSTAR system has converged. To do this:
 a. Tap Esc and continue surveying using RTK.
 b. To check to see if the OmniSTAR survey has converged tap General Survey / Measure / OmniSTAR initialization.
 c. When the OmniSTAR survey has converged, tap Offset and then measure the OmniSTAR offset. See steps 4 to 10 below.
 - You can initialize your OmniSTAR survey enabling you to to continue surveying using the OmniSTAR signals if the ground-based radio link goes down during an RTK survey. See Initializing an OmniSTAR survey below.
3. Tap New.
4. From the Initialization point field select a previously measured point.
 Tip - Trimble recommends selecting the highest quality, most convenient RTK point.
5. Define the antenna.
6. Optionally, enter a note.
7. With the survey receiver positioned at the Initialization point tap Start to measure the point.
 When the measurement is complete, the Trimble Access software computes the offset between the OmniSTAR position and the initialization point and applies this offset to the subsequent OmniSTAR corrected positions from the GNSS receiver, ensuring that the OmniSTAR positions are in terms of the RTK points.
 When OmniSTAR signals are being received, the radio icon changes to an SBAS icon 📈, and RTK:OmniSTAR appears on the status line.
 Tips
 - Tap 📈 to see the SBAS status. From the SBAS status screen, tap the Info softkey to see the OmniSTAR initialization details. The Info softkey is only available when you are in a survey.
 - Tap the Data link softkey from the SBAS status screen to access the Rover radio screen.
8. Continue surveying.
If the ground-based radio link goes down during an RTK survey you can continue surveying using the OmniSTAR signals.

For subsequent RTK surveys using OmniSTAR and the same RTK base as before, you do not need to measure a new OmniSTAR offset. When you start the survey you will be presented with a list of previously measured offsets for the current base. Select an appropriate offset.

Tips
- Tap **All** to see all previously measured offsets for all bases and then **Filter** to filter the list to display the offsets for the current base. You must select an offset for the current RTK base, or for another base that is in the same calibration. Tap **Delete** to delete an offset. Tap **Clear** to clear a previously selected offset.
- The selected offset is indicated by a tick.

Starting an OmniSTAR survey on its own

If you can’t start an RTK survey you can start an OmniSTAR survey on its own. To do this:

1. Attempt to start an RTK survey configured to use the OmniSTAR system when RTK is unavailable.
2. Tap **Esc**. You will be asked if you want to cancel the survey or start an OmniSTAR survey without waiting for RTK.
3. Tap **Continue** to start an OmniSTAR survey.
4. Select an OmniSTAR offset.
 - **Note** – Because you have not received an RTK base yet, the offset list can not be filtered. You must select an offset with the appropriate base.
 - **Tip** - The selected offset is indicated by a tick.
5. Continue surveying

Later, if you are within radio range and the RTK base is detected, a *New base detected* message appears, enabling you to select the base and continue surveying using RTK.

Initializing an OmniSTAR survey

If you start a survey without RTK, or if the ground-based radio link goes down during an RTK survey and you lose lock on satellites resulting in OmniSTAR losing convergence, you can manually initialize the OmniSTAR system. To do this:

1. Tap **General Survey / Measure / OmniSTAR initialization**.
2. If you have not already done so, select an offset.
 - **Tip** - The selected offset is indicated by a tick.
3. Tap **Init**.
4. From the **Initialization point** field, select a previously measured point.
 - **Tip** - Trimble recommends that you select the highest quality, most convenient RTK point.
5. Define the antenna.
6. With the survey receiver positioned at the \textit{Initialization point}, tap \textit{Start} to measure the point. The OmniSTAR system will converge.

\textbf{Note} –

- \textit{This procedure is only available for OmniSTAR HP, G2 and XP subscription levels.}
- \textit{If your RTK survey is running and an OmniSTAR offset is selected, OmniSTAR can initialize from the RTK survey automatically and this procedure is not necessary.}
- \textit{Tap \textit{\textcircled{343}} to see the SBAS status. From the SBAS status screen, tap the Info softkey to see the OmniSTAR initialization details. The Info softkey is only available when you are in a survey.}
- \textit{The SBAS status screen shows the current Correction satellite name. To select a different satellite, tap Options and then select the required satellite from the list. Alternatively, select Custom and then enter the frequency and bit rate to use. Changes you make to the settings are used the next time you start a survey. You can change the correction satellite at any time; changing the correction satellite does not require restarting the survey.}

\textbf{OmniSTAR - RT differential survey}

To survey using RT differential and OmniSTAR do this:

1. Create an RT differential survey style with the broadcast format set to OmniSTAR. See \textit{Rover and base options.}
2. Start an RT differential survey using this survey style.
 - When OmniSTAR signals are being received (and not RTK), the radio icon changes to an SBAS icon.
 - \textit{Tip} - Tap the SBAS icon to see the SBAS status.

\textbf{Note} – \textit{If you subscribed for OmniSTAR HP, G2, or XP, the accuracy of your position after convergence will improve as the system converges.}

\textbf{Starting the rover survey}

\textbf{Starting a real-time rover survey}

The base survey must be running before you can start a rover survey. If a base survey is not already running, start the base receiver. For more information, see \textit{Base receiver setup.}

\textbf{WARNING} - If you start a survey while the receiver is logging data, logging stops. If you start a survey that specifies data logging, logging restarts to a different file.

To start a survey using VRS or FKP (RTCM), you must send an approximate position for the rover receiver to the control station. When you start the survey, this position is automatically sent through your radio communications link in a standard NMEA position message. It is used to compute the RTK corrections your receiver will use.

To start the rover receiver for a real-time survey:

1. Make sure that the required job is open. The title of the main menu should be the current job name.
2. From the main menu, choose Measure or Stakeout. Select a survey style from the list. When you start a survey using a particular Trimble survey style for the first time, the General Survey software prompts you to customize the style for your specific hardware.

 Note – If you have only one survey style, it is automatically selected.

4. Make sure the rover is receiving radio corrections from the base.

 Note – An RTK survey needs radio corrections.

5. If the receiver you are using supports transmission delays and the Prompt for station index check box in the Rover options option in the survey style is selected, the Select base station screen appears. It shows all the base stations operating on the frequency you are using. The list shows the station index numbers of each base and the reliability of each. Highlight the base you want to use and tap Enter.

 For more information about using transmission delays, see Operating several base stations on one radio frequency.

 Tip - If you want to check the point name of the base station being used in the rover survey, select Files / Review current job and inspect the Base point record.

6. If necessary, initialize the survey using an RTK initialization method.

 Note – If you are carrying out an RTK survey but do not require centimeter-level results, select Measure / RTK initialization. Tap Init and set the Method field to No initialization.

 For an RTK survey, initialize before starting centimeter-level surveying. If you are using a dual-frequency receiver with the OTF option, the survey automatically starts to initialize using the OTF initialization method.

7. Measure points.

Switching to PP infill

During periods when no base corrections are received, the following message flashes in the status line:

Radio link down

To continue surveying select Start PP infill from the Measure menu. When postprocessing infill starts, this item changes to Stop PP infill.

Raw data is logged at the rover during postprocessing (PP) infill. For successful baseline resolution, you must now use postprocessed kinematic observation techniques.

Note – Initialization cannot be transferred between the RTK survey and the PP infill survey. Initialize the PP infill survey like any other postprocessed kinematic survey. For more information, see Postprocessed initialization methods.

Only rely on the OTF (automatic) initialization if you are certain that the receiver will observe at least six satellites, without interruption, for the next 8 minutes. Otherwise, select Measure / PPK initialization and perform an initialization.

When base corrections are received again, the Radio link up message appears in the status line. This message also shows the initialization mode of the RTK survey.

Select Stop PP infill from the Measure menu to stop data logging at the rover. When postprocessing infill stops, this item changes back to Start PP infill. Real-time measurements are resumed.
Starting a postprocessed rover survey

To start the rover receiver for a postprocessed survey, select **Start survey**.

Note – *You cannot stake out points during a postprocessed survey.*

You can begin surveying immediately, you do not need to initialize a FastStatic or RT differential survey.

You must initialize a PP kinematic survey to achieve centimeter-level precisions when the data is processed. With dual-frequency receivers, the initialization process begins automatically if at least five L1/L2 satellites are being observed.

For more information about initializing a postprocessed survey, see Postprocessed initialization methods. For information about measuring points, see Measure points.

Working with no initialization

If you do not want to initialize a survey, start the survey and then select **PPK initialization**. When the PPK initialization screen appears, press Init. Set the Method field to **No initialization** and then tap Enter.

Initialization

For an RTK survey, initialize before starting centimeter-level surveying. If you are using a dual-frequency receiver with the OTF option, the survey automatically starts to initialize using the **OTF initialization** method.

You must initialize a PP kinematic survey to achieve centimeter-level precisions when the data is processed. With dual-frequency receivers, the initialization process begins automatically if at least five L1/L2 satellites are being observed.

RTK initialization methods

If base corrections are being received and there are sufficient satellites, the survey is initialized automatically when you start the survey. A survey must be initialized before centimeter-level surveying can begin.

To re-initialize RTK while roving, set the Method to **Reset RTK** (R10 receiver only) or **On the fly** and then tap **Reset** or **Start**. The receiver re-initializes RTK. To drop all SV tracking, re-acquire the SVs, and re-initialize RTK, set the Method to **Reset SV tracking** and then tap **Reset**.

In the past, you might have used an "antenna dump" (tipping the rod upside down) to lose lock on the satellites in order to obtain an independent set of measurements before and after. With today’s tracking performance improvements, dumping the antenna often does not lose lock. Dumping the antenna is not recommended, instead use the **Reset SV tracking** function to perform the equivalent of an antenna dump. Resetting SV tracking is not recommended in difficult GNSS environments, instead use Reset RTK or **On the fly**. In difficult GNSS environments, retaining satellite signal tracking for some time can result in better performance than using re-acquired signals.

The number of satellites required depends on whether you are using GPS satellites only, or a combination of GPS and GLONASS satellites. The following table summarizes the requirements.
Minimum L1/L2 satellites required for initialization

<table>
<thead>
<tr>
<th>Satellite systems</th>
<th>Required satellites</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS only</td>
<td>5 GPS</td>
</tr>
<tr>
<td>GPS + QZSS</td>
<td>4 GPS + 1 QZSS</td>
</tr>
<tr>
<td>GPS + GLONASS</td>
<td>4 GPS + 2 GLONASS</td>
</tr>
<tr>
<td>GPS + BeiDou</td>
<td>4 GPS + 2 BeiDou</td>
</tr>
<tr>
<td>GPS + Galileo</td>
<td>4 GPS + 2 Galileo</td>
</tr>
<tr>
<td>BeiDou only</td>
<td>5 BeiDou</td>
</tr>
<tr>
<td>BeiDou + GPS</td>
<td>4 BeiDou + 2 GPS</td>
</tr>
<tr>
<td>BeiDou + GLONASS</td>
<td>4 BeiDou + 2 GLONASS</td>
</tr>
<tr>
<td>GLONASS only</td>
<td>N/A</td>
</tr>
<tr>
<td>Galileo only</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note – You cannot initialize if the PDOP is greater than 7.

After initialization, a position can be determined and the initialization can be maintained with one satellite less than the number required to initialize. If the number of satellites drops below this number, the survey must be reinitialized.

The following table summarizes the requirements.

Minimum L1/L2 satellites required to maintain initialization and produce positions

<table>
<thead>
<tr>
<th>Satellite systems</th>
<th>Required satellites</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS only</td>
<td>4 GPS</td>
</tr>
<tr>
<td>GPS + QZSS</td>
<td>3 GPS + 1 QZSS</td>
</tr>
<tr>
<td>GPS + GLONASS</td>
<td>3 GPS + 2 GLONASS</td>
</tr>
<tr>
<td>GPS + BeiDou</td>
<td>3 GPS + 2 BeiDou</td>
</tr>
<tr>
<td>GPS + Galileo</td>
<td>3 GPS + 2 Galileo</td>
</tr>
<tr>
<td>BeiDou only</td>
<td>4 BeiDou</td>
</tr>
<tr>
<td>BeiDou + GPS</td>
<td>3 BeiDou + 2 GPS</td>
</tr>
<tr>
<td>BeiDou + GLONASS</td>
<td>3 BeiDou + 2 GLONASS</td>
</tr>
<tr>
<td>GLONASS only</td>
<td>N/A</td>
</tr>
<tr>
<td>Galileo only</td>
<td>N/A</td>
</tr>
</tbody>
</table>

With legacy receivers, after initialization, the survey mode changes from Float to Fixed. The mode remains Fixed if the receiver continuously tracks at least four satellites. If the mode changes to Float, reinitialize the survey.
With new GNSS receivers, after initialization, the survey mode changes from *Not initialized* to *Initialized*. The mode remains *Initialized* if the receiver continuously tracks the minimum number of satellites. If the mode changes to *Not initialized*, you must reinitialize the survey.

Multipath

Initialization reliability depends on the initialization method used and on whether or not multipath occurred during the initialization phase. Multipath occurs when GNSS signals are reflected off objects, such as the ground, a building, or trees. When initializing, always choose a site that has a clear view of the sky and is free of obstructions that could cause multipath.

The occurrence of multipath at the GNSS antenna adversely affects GNSS initializations and solutions:

- If initialization is by the Known Point method, multipath can cause an initialization attempt to fail.
- During initialization by the OTF method, it is difficult to detect multipath, which may cause initialization to be lengthy or unsuccessful.

The initialization process in Trimble receivers is very reliable. In legacy receivers, if an incorrect initialization does occur, the Trimble RTK processing routines detect it very quickly, discard the initialization automatically and the Trimble Access software then displays a warning. In receivers equipped with HD-GNSS technology, incorrect initializations are more reliably prevented from occurring, and the precision estimates better reflect the multipath conditions.

Note –

- You should adopt good survey practice and periodically check your initialization by measuring previously measured points with a new initialization.
- To minimize the effect of multipath during an OTF initialization, move around.

Known Point initialization

To perform a Known Point initialization:

1. Position the rover antenna over a known point.
2. From the *Measure* menu, tap *RTK initialization*.
3. Set the *Method* field to *Known Point*.

 Tip - To re-initialize RTK while roving, set the *Method* to *Reset RTK* (R10 receiver only) or *On the fly* and then tap *Reset* or *Start*. The receiver re-initializes RTK. To drop all SV tracking, re-acquire the SVs, and re-initialize RTK, set the *Method* to *Reset SV tracking* and then tap *Reset*. Resetting SV tracking in compromised GNSS environments is not recommended.
4. Access the *Point name* field and tap *List*. Select the point from the list of known points.
5. Enter values in the *Antenna height* field, and make sure that the setting in the *Measured to field* is correct.
6. When the antenna is centered and vertical over the point, tap *Start*.

 The controller starts to record data, and the static icon (¶) appears in the status bar. Keep the antenna vertical and stationary while data is recorded.
Tip - If you are using a GNSS receiver with an in-built tilt sensor, tap eBubble (or press Ctrl + L) to display the eBubble. When the bubble is green, tap Start to ensure that the point is measured within the predefined tilt tolerance. The tolerance is that specified for a Topo point.

7. When the receiver is initialized, a message stating this appears together with the deltas from the RTK position to the known point. Tap Accept to continue.

8. If the initialization fails, the results are displayed. Tap Retry to retry the initialization.

Postprocessed initialization methods

In a postprocessed survey you must initialize to attain centimeter-level precisions. Use one of the following methods to initialize dual-frequency postprocessed kinematic surveys in the field:

- On-The-Fly
- Known Point

Note – *In a postprocessed survey, collect enough data during initialization so that the postprocessor can successfully process it. Recommended times are as follows.*

<table>
<thead>
<tr>
<th>Initialization method</th>
<th>4 SVs</th>
<th>5 SVs</th>
<th>6+ SVs</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1/L2 on-the-fly initialization</td>
<td>N/A</td>
<td>15 min</td>
<td>8 min</td>
</tr>
<tr>
<td>L1/L2 new point initialization</td>
<td>20 min</td>
<td>15 min</td>
<td>8 min</td>
</tr>
<tr>
<td>Known Point initialization</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

After initialization, the survey mode changes from Not initialized to Initialized. The mode remains Initialized if the receiver continuously tracks the minimum number of satellites. If the mode changes to Not initialized, you must reinitialize the survey.

Note – *If you do an On-The-Fly initialization in a postprocessed kinematic survey, you can measure points before initialization is gained. The Trimble Business Center software can back-process the data later to give a centimeter-level solution. If you do this but lose lock on the satellites while initializing, re-measure any one of the points that you surveyed before lock was lost.*

Known Point initialization

In a postprocessed survey you can initialize on:

- a point measured previously in the current job
- a point that you will provide coordinates for later (before the data is postprocessed)

See Known Point initialization for instructions.

Starting a real-time survey using a dial-in connection

If you are receiving corrections from a single base station, do not start the survey until you have started the base receiver.
To start the rover receiver for a real-time survey:

1. If you are using a cellular modem, make sure that the modem is switched on and then connect it to the receiver (or to the controller if you selected the Route through controller option).
2. If you are using a Trimble Internal GSM module, make sure that the receiver is turned on and is connected to the controller.
3. From the main menu, tap Measure / <Style name> / Measure points.
 The message Connecting to modem appears. Once the connection is set up, the modem dials the base station or wide-area RTK service provider. When the call is connected, and the corrections data link is established, the cellular phone icon appears on the status bar.
 Tip - Select the Prompt for GNSS contact check box to display the GNSS contact that is configured in the survey style, or change the GNSS contact when you start the survey.

To end the survey, tap Measure / End GNSS survey. The modem hangs up during the end survey process.

Note –

- When you send initialization strings to the modem, if you see the error message "No response from modem", check that the strings you set in the survey style are valid for your particular modem. Some modems accept only upper case AT commands.
- To configure a survey style to use a dial-in data link, see Configuring a dial-in data link.

Starting a real-time survey using a mobile Internet connection

If you are receiving corrections from a single base station, do not start the survey until you have started the base receiver.

To start the rover receiver for a real-time survey:

1. If you are using a cellular modem, make sure that the modem is switched on, then connect it to the receiver.
2. If you are using a Trimble internal modem, make sure that the receiver is turned on and is connected to the controller.
3. From the main menu, tap Measure / <Style name> / Measure points
4. If the Prompt for GNSS contact check box is selected in your survey style, select a GNSS contact to use.
 The message "Establishing network connection" appears.
5. If Connect directly to Mountpoint and the NTRIP Mountpoint name were configured in the GNSS contact, you are not prompted to select one from the Source Table.
 If Connect directly to Mountpoint was not selected, or the NTRIP Mountpoint name was not configured, or the defined Mountpoint cannot be accessed, the Source Table appears. Select the Mountpoint you want to receive corrections from.

Once the corrections data link is established, the radio icon appears on the status bar. Once the connection is completed, the modem receives corrections from the base station or wide-area RTK service provider through the Internet connection.
Note –

- To configure a survey style to use an Internet data link, see Configuring an Internet data link.

- If you are using a Geo7X/GeoXR controller and the Trimble Access software changes the mode of the internal modem when you start the survey, then the current "3G/GSM Selection" displayed in the controller operating system may be incorrect.

- If you are using the internal modem of an SP80 receiver and the first connection attempt fails, you may need to wait up to a minute for the modem to power up and initialize before you attempt the connection again.

- When you start a survey with the controller already connected to the Internet, the existing connection is used for the base data. The Internet connection does not close when you end the survey.

- When you start a survey with the controller not connected to the Internet, the controller will open an Internet connection using the connection specified in the Survey Style. This connection closes when you end the survey.

Redialing the base station

If you lose the cellular modem connection when using a dial-in or Internet data link, use Redial to re-establish the connection to the base station or wide-area RTK network.

Alternatively, you can hang up the modem using the General Survey software, continue the survey, and later redial the base to re-establish corrections.

To hang up and redial a dial-in connection:

1. Tap the cellular modem icon on the status bar. The Rover data link screen appears.
2. To hang up the modem, tap Hang up.
3. To redial the base station, tap Redial.

To hang up and redial a mobile internet connection:

1. Tap the network connection icon on the status bar. The Rover data link screen appears.
2. To hang up the network connection, tap Hang up.
3. To redial the base station, tap Redial.

Note –

- A mobile Internet connection can be hung up in the Rover data link screen only when the connection was established when you started the survey. However, you can always redial the connection from within the Rover data link screen while the survey is running.

- When you redial a VRS service provider, a new VRS base station position is sent through the data link. The General Survey software switches to the new base, and the survey continues.
Ending the rover survey

When you have measured or staked out all points required, do the following:

1. From the Measure or Stakeout menu, choose End GNSS survey.
 When prompted to power down the receiver, tap Yes.
2. Turn off the controller before disconnecting the equipment.
3. Return to the base station and end the base survey. For more information, see Ending a base survey.
GNSS Survey – Measure

Measuring points in a GNSS survey

The Measure screen lets you record points measured using data from the connected GNSS instrument. For information on setting up the instrument, see GNSS survey – Getting started.

To access the Measure screen, from the main menu tap Measure.

To measure points, select Measure points then select the appropriate measurement method from the Method field.

The types of points that you can measure depend on your survey style and the survey method used.

In real-time GNSS surveys, the following methods are available:

<table>
<thead>
<tr>
<th>Select...</th>
<th>To...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topo point</td>
<td>measure a point</td>
</tr>
<tr>
<td>Compensated</td>
<td>measure a point using an unlevelled pole with a</td>
</tr>
<tr>
<td>point</td>
<td>Trimble R10 receiver, and have the antenna's</td>
</tr>
<tr>
<td></td>
<td>offset location corrected to produce a ground</td>
</tr>
<tr>
<td></td>
<td>position at the tip of the pole.</td>
</tr>
<tr>
<td>Observed</td>
<td>measure a point with an extended occupation</td>
</tr>
<tr>
<td>control point</td>
<td>time and quality control information.</td>
</tr>
<tr>
<td>Calibration</td>
<td>measure a point during site calibration.</td>
</tr>
<tr>
<td>point</td>
<td></td>
</tr>
<tr>
<td>Rapid point</td>
<td>quickly measure a point with no minimum</td>
</tr>
<tr>
<td></td>
<td>occupation time.</td>
</tr>
</tbody>
</table>

Note – If you have turned off Tilt in the Rover Options form or set the Broadcast format to RTX when configuring the survey style, then the compensated point measurement method is not available.
In postprocessed GNSS surveys, the following methods are available:

<table>
<thead>
<tr>
<th>Select...</th>
<th>To...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topo point</td>
<td>measure a point</td>
</tr>
<tr>
<td>Observed control point</td>
<td>measure a point with an extended occupation time and quality control information.</td>
</tr>
<tr>
<td>FastStatic</td>
<td>measure a point without tracking satellites between points.</td>
</tr>
</tbody>
</table>

Other ways to measure a point

The General Survey software also enables you to:

- Measure points with feature codes. Select Measure codes in the Measure screen.
- Measure a line of points at a fixed distance, fixed time, or distance and time interval, or to measure points along with depths using an echo sounder. To do this, select Continuous topo in the Measure screen.
- Capture panoramas when measuring points if the controller is connected to a Trimble V10 imaging rover.
- Measure and store a check point.
- Measure and automatically store a construction point. For more information, see Fast fix.
- Measure points using a laser rangefinder.

Occupation warnings

During a point measurement the General Survey warns you if there are adverse conditions that result in any of the tolerances being exceeded and prevent the point being stored. The Confirm and store point? screen lists all issues that occurred during the measurement, in order of priority. Tap Yes to store the point, tap No to not store the point. To re-measure the point, tap Re-Measure.

Note — No warnings appear when you are measuring a Rapid point.

- When you press Measure and the eBubble is outside the tilt tolerance (the bubble is red) a Receiver not level, measure anyway? message appears. Tap Yes to continue measuring the position.

- You can tap the button to accept the measurement before the occupation time or precisions have been satisfied or while there are conditions preventing point storage.

Note —

- Two behaviors are supported when measuring a position with excess tilt or excess movement.
 - Automated behavior: Use the Auto abandon option for Topo point and Observed control point. When selected, points measured using a GNSS receiver with an in-built tilt sensor that experience excess tilt, or, for all receivers, excess movement, during the measurement process are abandoned. To re-measure the point you must...
manually start measuring the point again, unless you are measuring a Topo point with Tilt Auto-measure enabled, in which case the software will return you to the "Waiting for level" state so no manual interaction is needed.

- **Manual behavior**: Use the Re measure option to discard the current point and remeasure the point.

- **The Position compromised warning** appears when the receiver is in static mode measuring a point and a new GNSS position is different from the immediately previous GNSS position by more than the current 3-sigma precision estimates. This warning appears only when the difference in position is larger than the current precision tolerances, and if the GNSS receiver does not produce excess movement warnings of its own during the occupation. The position compromised warning can occur in severely marginal GNSS environments where there is a lot of multipath or signal attenuation. The QC1 occupation warnings information enables you to tell if this happened while observing a point stored in the database.

GNSS messages

To discard GNSS messages and prevent them re-appearing, tap **Ignore** in the message. For non-RTX messages, the message is discarded and does not appear again. For Trimble RTX correction service messages, only messages regarding the same subscription status are ignored; if the subscription status changes then the Ignore setting is reset and messages appear. Tapping **Ignore** is controller-specific; if you use the same GNSS receiver with a different controller then the Ignore setting for that controller is used and the messages may reappear.

Reviewing stored points

To review stored points, select **Review job** from the **Jobs** menu.

Tip - In **Point name** fields there is a **Find** softkey that lets you search for the next available point name. For example, if your job contains points numbered in the 1000s, 2000s and 3000s, and you want to find the next available point name after 1000:

1. In the **Point name** field, tap **Find**. The **Find next free point name** screen appears.
2. Enter the point name you want to start searching from (in this example, 1000) and tap **Enter**. The General Survey software searches for the next available point name after 1000 and inserts it in the **Point name** field.

Topo point

This is a previously configured method of measuring and storing a point.

Configure settings for this measurement method in your survey style or tap **Options** in the **Measure points** screen.
Measuring a topo point in a GNSS survey

You can measure a topo point in every type of survey except a FastStatic survey.

1. Do one of the following:
 - From the main menu, select Measure / Measure points
 - Tap Favorites and select Measure point
 - From the Map, select Measure (only available when nothing in the map is selected).
 To automatically start the measurement when you select Measure from the map, tap Options and then select the Auto measure check box.

2. Enter values in the Point name and Code fields (the Code field entry is optional), and then select Topo point from the Method field.
 If the code has attributes, see Using feature codes with predefined attributes.

3. Enter a value in the Antenna height field and make sure that the setting in the Measured to field is set appropriately.

4. If you have not already done so: tap Options to:
 - Configure the quality control, precision, and tilt settings.
 - Select Add vertical offset, if required. Then in the Measure points screen, enter a value in the Vertical offset field.

5. When the antenna is vertical and stationary, tap Measure to start recording data. The static icon appears in the status bar.
 Tip - You can tap Enter to accept the measurement before the occupation time or precisions have been satisfied.

6. When the preset occupation time and precisions have been reached, tap Store.

Tips
- When using a GNSS receiver with an in-built tilt sensor, you can configure the survey style to prompt a warning when the pole is outside a specified Tilt tolerance. When measuring a point, the eBubble appears. Store the point when the bubble is within the tilt tolerance.
- Select the Auto store point check box to automatically store the point when the preset occupation time and precisions have been met.
- You can use the Trimble V10 imaging rover to capture panoramas when you measure a point during a GNSS survey.

Tilt auto-measuring a topo point in a GNSS survey

To Tilt auto-measure a topo point you must use a GNSS receiver with an in-built tilt sensor and define a suitable survey style.

1. Do one of the following:
 - From the main menu, select Measure / Measure points
 - Tap Favorites and select Measure points
 - From the Map, select Measure (only available when nothing in the map is selected).
To automatically start the measurement when you select Measure from the map, tap Options and then select the Auto measure check box.

2. Enter values in the Point name and Code fields (the Code field entry is optional) and then select Topo point in the Method field.

3. Enter a value in the Antenna height field and make sure that the setting in the Measured to field is set appropriately.

4. Tap Options to configure the quality control, precision and tilt settings.

5. Tap Start. The eBubble will automatically display and Waiting for level will display in the status line.

6. When the receiver is within the specified tilt tolerance, the position will auto-measure. The static icon appears in the status bar.

7. When the preset occupation time and precisions have been reached, tap Store.

8. The status line updates to display Waiting to move. You can now move to the next point to be measured. When movement of more than 5 degrees of tilt is detected the status line updates to display Waiting for level. The system is now ready to measure the next point.

9. To exit the Tilt auto-measure process press End.

Compensated point

The Compensated point measurement method allows you to measure points with an unlevelled pole with a Trimble R10 receiver, and have the antenna’s offset location corrected to produce a ground position at the tip of the pole.

Compensated points are useful when:

- You want to speed up your workflow without spending time making sure the pole is level.
- An obstruction means that you are unable to position the antenna directly above the point. Traditionally you would need to use an offsetting technique to measure such points.

To measure compensated points, the Trimble R10 receiver must have receiver firmware version 4.83 or later. To import Trimble Access job files with compensated points in Trimble Business Center, you must have TBC version 2.95 (32-bit) or 3.10 (64-bit) or later.

Configure settings for this measurement method in your survey style or tap Options in the Measure points screen.

Measuring a compensated point in a GNSS survey

Before measuring compensated points you must calibrate the tilt sensor and magnetometer in the GNSS receiver. See eBubble calibration and Magnetometer calibration.

Note – For best horizontal accuracy, Trimble recommends you calibrate the magnetometer each time you replace the battery in the GNSS receiver.

1. Start a GNSS survey and then go to the Measure point screen.

2. Enter a value in the Point name field (and Code field if required), and then select Compensated point from the Method field.
3. Enter a value in the Antenna height field and make sure that the setting in the Measured to field is set appropriately.

4. Tap Options to configure the quality control and precision settings.

 Note – The precisions shown reflect the amount of tilt of the antenna. If measuring points with large amounts of tilt, you may need to increase the precision tolerance setting.

5. Position the antenna and make sure it is stationary.

6. The eBubble shows the amount of tilt of the antenna. For more information, see Using a GNSS receiver with an in-built tilt sensor and magnetometer.

 Note – An "Excess tilt" message appears in the status bar and the eBubble turns red if the tilt exceeds 15 degrees. If you can, level up the antenna so there is less tilt. If you are unable to decrease the tilt to less than 15 degrees, perform an offset measurement instead.

7. Tap Measure. The compensated point icon appears in the status bar. The eBubble changes to help you hold the antenna stationary.

 Tip - You can tap Enter to accept the measurement before the occupation time or precisions have been satisfied.

8. When the preset occupation time and precisions have been reached, tap Store.

 Tip - To speed up your workflow, enable one or both of the following options:

 - To start measuring automatically when the receiver is within a specified tilt tolerance, enable the Tilt auto-measure option. For more information, see Using a GNSS receiver with a built-in tilt sensor and magnetometer.
 - To automatically store the point when the occupation time and precisions have been reached, enable the Auto store option.

Magnetic disturbance

The **Compensated point** measurement method uses the tilt sensor and magnetometer built into the Trimble R10 receiver to compute the position of the pole tip. The performance of any magnetometer is affected by nearby metal objects (for example, vehicles or heavy machinery) or objects that generate magnetic fields (for example, high voltage overhead or underground power lines).

The system attempts to detect the amount of magnetic disturbance in the environment by comparing the sensed magnetic field with the expected magnetic field. The expected magnetic field comes from a model of the earth’s magnetic field stored in the receiver. The magnetometer senses the magnitude (strength) and the vertical direction (inclination angle) of the environment’s magnetic field and compares it to the expected magnitude and vertical direction for the location. If the values do not match, then magnetic disturbance is detected.

The level of magnetic disturbance is indicated by the Magnetic disturbance value, which uses a scale from 0 to 99. The level of magnetic disturbance is also reflected in the precision estimate. If you have correctly calibrated the magnetometer and are working in an environment free of magnetic interference, then you should see magnetic disturbance values lower than 10.

If the value is higher than 50, a warning is displayed on the status line. If the value is 99 you will not be able to store the point unless the pole’s tilt distance is within 1 cm of level. Check the vicinity for sources of magnetic interference. If there are there are no obvious sources of magnetic disturbance, check your calibration.
You can view the magnetic disturbance value for a point in the Review Job screen.

WARNING - In magnetically disturbed environments it is possible for the magnetometer to sense the expected magnitude and vertical direction values but an incorrect horizontal direction. It is impossible to detect this. If this happens, the software reports low magnetic disturbance values when in fact there are large magnetic azimuth errors. To avoid these errors, it is important to use compensated points only in areas free of magnetic disturbance.

Tip - Only the horizontal position is dependent on the magnetometer. If your survey requires high vertical accuracy but horizontal accuracy is less important, then magnetic interference may be less significant. The horizontal quality of the point degrades more at a higher tilt angle with higher magnetic disturbance. In other words, magnetic disturbance has no effect if the pole is level.

Using a GNSS receiver with a built-in tilt sensor and magnetometer

A GNSS receiver with an in-built tilt sensor has the following features:

- Tilt auto-measure
- Tilt warnings
- eBubble display

See also: eBubble calibration and Magnetometer calibration.

Tilt auto-measure

Tilt auto-measure enables a Topo point, Compensated point, or Rapid point to be auto measured when the pole is within a predefined tilt tolerance. When surveying using this measurement option an eBubble, (electronic bubble) is displayed.

Enabling tilt auto-measure

1. **Settings / Survey Styles - Rover options** and select the **Tilt** option.
2. **Settings / Survey Styles** and select the **Tilt auto-measure** option and then enter a **Tilt tolerance** for topo and rapid point types or enter a **Tilt distance** for compensated points.
3. **Instrument / Receiver settings** and configure the **eBubble**.

Note –

- **Tilt auto-measure does not operate in stakeout mode.**
- **Tilt configuration is also available from Options during a survey.**
- **Once the Tilt auto-measure sequence is started, no other survey measurement or stakeout process is permitted.** Similarly, if you are doing another type of measurement or stakeout, you cannot start the Tilt auto-measure sequence.
Tilt auto-measuring a point

1. From the Measure points screen tap Start to begin the auto measure process.
2. If the pole is tilted outside of the tilt tolerance the status line will display *Waiting for level* and the eBubble will display red.
3. When the pole is within the tilt tolerance for more than half a second the software automatically begins measuring the point.
4. When the point is stored the status line will display *Waiting to move*. This means the system is waiting for you to tilt the pole by more than 5 degrees on your way to the next point to be measured.
5. Once the system has detected you have moved the pole the Status line will display *Waiting for level* and will automatically start another point measurement when you level the pole within the tilt tolerance.
6. To exit the Tilt auto-measure mode, press End when the status is *Waiting for level* or *Waiting to move*.

Tilt warnings

Tilt warnings is an option that can be enabled to warn you if the rod tilt in excess of the predefined tilt tolerance is detected during measurement. When tilt warnings are enabled a measurement can only be stored when the eBubble is green and within the tolerance circle. You can override the warning and store the point if you wish by pressing the button.

When the Auto-abandon setting is enabled, points measured using a GNSS receiver with an in-built tilt sensor that experience excess tilt or excess movement during the measurement process are abandoned. For information, see Measuring points in a GNSS survey.

Tilt warnings are supported for the following measurement methods:

- *Topo point*
- *Compensated point*
- *Observed control point*
- *Continuous points*
- Staking a *Point* with General Survey software or Land Seismic software
- Staking a *Line, Arc, or Alignment* with General Survey software.
- Staking a *Road* with Roads software.

Enabling tilt warnings

1. Settings / Survey Styles - Rover options and select the *Tilt* option.
2. Settings / Survey Styles and select the *Tilt warnings* option and enter a *Tilt tolerance* for topo, observed control, rapid and continuous point types.
3. Instrument / Receiver settings and configure the eBubble.
Notes – Tilt auto-measure and tilt warnings

- If the eBubble is outside the tilt tolerance when you are starting to measure a topo or observed control point (the bubble is red), a Receiver not level, measure anyway? message appears. Tap Yes to continue measuring the position.
- An Excess tilt detected when static message appears if you have had excess tilt at any time during the measurement process.
- An Excess tilt message appears if you have had excess tilt at the time of storage.
- The eBubble is aligned to the receiver’s LED panel. To operate the eBubble correctly, the LED panel must be facing you (that is, you must be looking directly at the receiver’s LED panel).
- You can specify a Tilt tolerance and not select Tilt warnings. When you do this the eBubble indicates when the receiver is within the specified tolerance but the tilt warning is not displayed.
- Tilt information is stored with every measured point provided the eBubble was calibrated at the time the point was stored. No tilt information will be stored if the eBubble was not calibrated.
- You will be forced to recalibrate the eBubble if the current temperature differs by more than 30 degrees Celsius from the calibration temperature.

eBubble display

Tilt tolerance is defined as the distance on the ground that the tilt represents given the antenna height. If the pole is held such that the resultant distance on the ground (Tilt distance) is less than the tilt tolerance the eBubble will display green and the point can be measured. The Tilt distance is stored with the job and is available at Review job. The circle on the eBubble vial represents the tilt tolerance.

To display the eBubble, tap the eBubble softkey.

<table>
<thead>
<tr>
<th>Bubble color</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>You are within the defined tilt tolerance.</td>
</tr>
<tr>
<td>Red</td>
<td>You are outside the defined tilt tolerance.</td>
</tr>
</tbody>
</table>

Note - If the eBubble is red, you can still choose to store the position. To do this, tap .

When measuring a compensated point, the graduations in the eBubble vial represent the sphere through which the antenna moves when the pole tip is stationary.

Before you start measuring, the eBubble shows the amount of tilt of the antenna. For example:
<table>
<thead>
<tr>
<th>Bubble color</th>
<th>Tilt range</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>< 12 degrees</td>
<td>You are within the tilt tolerance for a compensated point.</td>
</tr>
<tr>
<td>Yellow</td>
<td>12 to 15 degrees</td>
<td>You are close to exceeding the tilt tolerance for a compensated point.</td>
</tr>
<tr>
<td>Red</td>
<td>> 15 degrees</td>
<td>You have exceeded the tilt tolerance for a compensated point.</td>
</tr>
</tbody>
</table>

When you tap Measure, the appearance of the eBubble changes to help you hold the antenna stationary. For example:

Keep the antenna as still as possible while measuring.

Tips

- To configure the eBubble, tap Instrument / eBubble options from the main menu, or tap the Settings icon in the top left corner of the eBubble window.
- To move the eBubble window to a new position on the screen, tap and hold on the eBubble and drag to a new position.
- Press CTRL + L to show or hide the eBubble from any screen.

Observed control point

Use the Observed control point method to measure a point with an extended occupation time and quality control information.

If the Topo point option is configured to perform 180 measurements, the positional result is similar to a point measured using the observed control point measurement type. Differences are:

- the default value in the Quality control field
- the observation class given by the office software when the point is downloaded

Configure settings for this measurement method in your survey style or tap Options in the Measure points screen.

Measuring an observed control point

1. Do one of the following:
 - From the main menu, select Measure / Measure points.
 - Tap Favorites and select Measure points.
2. Enter values in the Point name and Code fields (the Code field entry is optional), and then select Observed control point in the Method field.
3. Enter a value in the Antenna height field and make sure that the setting in the Measured to field is set appropriately.
4. Tap Options to configure the quality control, precision, and tilt settings.
5. Tap Measure to start recording data.
6. When the preset number of epochs and precisions are reached, tap Store to store the point.

If you are using a GNSS receiver with an in-built tilt sensor and Tilt warnings has been selected (see Measurement method options), the eBubble appears. Store the point when the bubble is within the tilt tolerance.

Tips
- If the eBubble is outside the tilt tolerance (the bubble is red) a Receiver not level, measure anyway? message appears. Tap Yes to continue measuring the position.
- You can tap the button to accept the measurement before the occupation time or precisions have been satisfied or if there has been movement, tilt, or precision warnings during the occupation.
- If you have been static measuring a point for longer than 15 epochs and the precisions go out of tolerance, a message warns that the occupation timer will reset and allows you to store the last position with good precisions. Tap Yes to store the last good position. Tap No to reset the timer and continue measuring the point.
- An Excess tilt detected when static message appears if you have had excess tilt at any time during the measurement process.
- An Excess tilt message appears if you have excess tilt at the time of storage.
- Select Instrument / eBubble options to configure the eBubble.

Note – For an RTK survey, initialize the survey before starting to measure the point. For a Postprocessed Kinematic survey, you can start measuring a point before initialization, but you should not store it until you have initialized the survey.

Rapid point

This is a method for measuring real-time GNSS points quickly. The point is stored when the preset precisions have been satisfied. There is no minimum occupation time, because the software uses a single epoch of data to define the point. This makes Rapid point the least precise measurement method.

Tip - When measuring a Rapid point, The General Survey software collects just one epoch of data when the preset precisions are reached, so the default precision values should ideally be higher than for other point measurement types.

Configure settings for this measurement method in your survey style or tap Options in the Measure points screen.

Note – In an RTK and Data logging survey, points measured using the Rapid point method are not saved to the T01/T02 file and are not available for postprocessing.
Measuring a rapid point

1. Do one of the following:
 - From the main menu, select Measure / Measure points.
 - Tap Favorites and select Measure points.
2. Enter values in the Point name and Code fields (the Code field entry is optional), and then select Rapid point from the Method field.
3. Enter a value in the Antenna height field and make sure that the setting in the Measured to field is set appropriately.
4. Tap Options to configure the quality control, precision, and tilt settings.
5. Tap Measure to start recording data. The point is automatically stored when the preset precisions are reached.
 Tip - When using a GNSS receiver with an in-built tilt sensor, you can configure the survey style to prompt a warning when the pole is outside a specified Tilt tolerance. When measuring a point, the eBubble appears. Store the point when the bubble is within the tilt tolerance.

Tilt auto-measuring rapid points

To Tilt auto-measure rapid points, you must use a GNSS receiver with an in-built tilt sensor, and define a suitable style.

1. Do one of the following:
 - From the main menu, select Measure / Measure points.
 - Tap Favorites and select Measure points.
2. Enter values in the Point name and Code fields (the Code field entry is optional), and then enter Rapid point in the Method field.
3. Enter a value in the Antenna height field and make sure that the setting in the Measured to field is set appropriately.
4. Tap Options to configure the quality control, precision, and tilt settings.
5. Tap Start. The eBubble automatically appears and Waiting for level appears in the status line.
 Tip - Select Instrument / eBubble options to configure the eBubble.
6. When the receiver is within the specified tilt tolerance, the position will auto-measure.
 If the Rapid point has 'poor precision' or 'excess tilt' or 'poor DOP' at the beginning or during the 1 second epoch, the button appears, preventing the point from auto-storing. If the precision improves, or the pole is relevelled, then the point is stored automatically. To discard the warning and store the point, tap the button.
 Note – There are no 'Excess movement' or 'Bad GNSS Environment' checks when measuring a Rapid point.
7. The status becomes Waiting to move. You can now move to the next point to be measured. When movement of more than 5 degrees of tilt is detected, the status changes to Waiting for level. The system is now ready to measure the next point.
8. To exit the Tilt auto-measure sequence, press End.
FastStatic point

This type of point is measured in a FastStatic survey. Configure settings for this measurement method in your survey style or tap Options in the Measure points screen.

Note – FastStatic surveys are postprocessed and do not need to be initialized.

Measuring a FastStatic point

1. Do one of the following:
 - From the main menu, select Measure / Measure points.
 - Tap Favorites and select Measure points.
2. Enter values in the Point name and Code fields (the Code field entry is optional).
3. Enter a value in the Antenna height field and make sure that the setting in the Measured to field is set appropriately.
4. Tap Measure to start measuring the point.
5. When the preset occupation time is reached, as shown in the following table, tap Store to store the point.

<table>
<thead>
<tr>
<th>Receiver type</th>
<th>4 SVs</th>
<th>5 SVs</th>
<th>6+ SVs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-frequency</td>
<td>30 min</td>
<td>25 min</td>
<td>20 min</td>
</tr>
<tr>
<td>Dual-frequency</td>
<td>20 min</td>
<td>15 min</td>
<td>8 min</td>
</tr>
</tbody>
</table>

Tip - No satellite tracking is necessary between measuring points.

Note – The occupation time counter for measuring a FastStatic point is paused when the PDOP of the satellites being tracked exceeds the PDOP mask set in the survey style being used. The counter resumes when the PDOP falls below the mask.

The number of satellites required for measuring a FastStatic point depends on whether you are using GPS satellites only, BeiDou satellites only or a combination of GPS, BeiDou, GLONASS, Galileo and QZSS satellites. The following table summarizes the minimum requirements:

<table>
<thead>
<tr>
<th>Satellite systems</th>
<th>Required satellites</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS only</td>
<td>4 GPS</td>
</tr>
<tr>
<td>GPS + QZSS</td>
<td>3 GPS + 1 QZSS</td>
</tr>
<tr>
<td>GPS + GLONASS</td>
<td>3 GPS + 2 GLONASS</td>
</tr>
<tr>
<td>GPS + BeiDou</td>
<td>3 GPS + 2 BeiDou</td>
</tr>
<tr>
<td>GPS + Galileo</td>
<td>3 GPS + 2 Galileo</td>
</tr>
<tr>
<td>BeiDou only</td>
<td>4 BeiDou</td>
</tr>
<tr>
<td>BeiDou + GPS</td>
<td>3 BeiDou + 2 GPS</td>
</tr>
</tbody>
</table>
Continuous topo – GNSS

Use the *Continuous topo* function to measure points continuously. A point is stored when one of the following conditions occurs:

- A predefined time has elapsed
- A predefined distance has been exceeded
- Both predefined time and/or distance settings have been met
- A predefined stop time and distance settings have been met

If you are doing a postprocessed survey, the time interval is the logging interval. Configure this logging interval in the *Rover options* screen of the postprocessed survey style.

Configure settings for this measurement method in your survey style or tap *Options* in the *Measure points* screen.

Measuring continuous topo points

1. From the main menu, tap *Measure / Continuous topo*.
2. In the *Method* field, select one of the following:

 - *Fixed time*
 - *Fixed distance*
 - *Time and distance*
 - *Time or distance*
 - *Stop and go*

 Note – *For a postprocessed survey, you can only use the Fixed time continuous method. The time interval is set by default to the same value as the logging interval.*

3. Tap *Options* to configure the quality control, precision, and *tilt settings*.
4. Enter a value in the *Antenna height* field and make sure that the setting in the *Measured to* field is set appropriately.
5. Enter a value in the *Time interval* field, or the *Stop and go* field and/or the *Distance* field, depending on the method you are using.
6. To generate offsets, set the *Offset* field to *One* or *Two*. The *Fixed time* method does not support offsets.
7. Enter a value in the *Start point name* field (or enter a start point name for the center line when measuring offset points). This increments automatically.

Satellite systems

<table>
<thead>
<tr>
<th>Satellite systems</th>
<th>Required satellites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BeiDou + GLONASS</td>
<td>3 BeiDou + 2 GLONASS</td>
</tr>
<tr>
<td>GLONASS only</td>
<td>N/A</td>
</tr>
<tr>
<td>Galileo only</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Trimble Access General Survey help 365
8. If you are measuring an offset line, enter the offset distances and the start point name. To enter a left horizontal offset, enter a negative offset distance or use the Left or Right pop-up menus.

9. Tap Measure to start recording data, and then move along the feature to be surveyed. If you are using a GNSS receiver with an in-built tilt sensor and Tilt warnings has been selected, you will not be able to measure a point until the receiver is within the defined tilt tolerance as indicated by the eBubble.

 Note - To change the distance interval, time interval, or offset while measuring points, enter new values in the fields.

10. To stop measuring continuous points, tap End.

 Tip - To store a position before the predefined conditions have been met, tap Store.

Using an Echo sounder to store depths

You can use continuous topo to store depths with measured points.

Configuring the survey style

1. From the Trimble Access menu, tap Settings / Survey styles / <Style name>.
2. Tap Echo sounder.
3. Select an instrument from the Type field.
4. Configure the Controller port:

 - If you set the Controller port to Bluetooth, you must configure the echo sounder Bluetooth settings.

 - If you set the Controller port to COM1 or COM2, you must configure the port settings.
5. If required, enter the Latency and Draft and then tap Accept.

 The latency caters for echo sounders where the depth is received by the controller after the position. General Survey software uses the latency to match and store the depth when it is received with continuous topo points that were saved previously.

6. Tap Accept and then tap Store to save the changes.

Storing continuous topo points with depths

To store continuous topo points with depths, follow the steps above to Measure continuous topo points, while connected to the echo sounder with a correctly configured survey style.

Note –

- During the survey, you can disable storing depths with continuous topo points. To do this, tap Options and then clear the Use echo sounder check box. You can also configure Latency and Draft from Options.

- The Draft will have an effect on how the antenna height is measured. If the Draft is 0.00 then the antenna height is the distance from the transducer to the antenna. If a Draft is specified, then the antenna height is the distance from the transducer to the antenna, minus the draft.

When measuring continuous topo points with an echo sounder enabled, a depth is displayed during continuous topo, and also in the map. When a latency has been configured the continuous
topo points are initially stored without depths and later updated. The depth that is displayed during continuous topo when a latency has been configured, is an indicator that depths are being received. The depths that are displayed may not be the depths that are stored with the point names that are displayed at the same time.

CAUTION - There are many factors involved in correctly pairing positions with accurate depths. These include sound velocity - which varies with water temperature and salinity, hardware processing time, and the speed at which the boat is moving. Make sure that you use the appropriate techniques to achieve the required results.

The elevations of continuous topo points stored in General Survey software do not have the depth applied to them. Use *Export custom format* files to generate reports with depths applied.

The following sample reports are available for download from *Trimble Access Downloads* (www.trimble.com/support_trl.aspx?Nav=Collection-62098):

- [Survey report.xsl]
- [Comma Delimited with elevation and depths.xsl]
- [Comma Delimited with depth applied.xsl]

Note – *If a Sonarmite instrument is connected, General Survey software configures it to use the correct output format and mode. For an instrument from another manufacturer, you must manually configure it to use the correct output format.*

Fast fix

Tap *Fast fix* to quickly measure and automatically store a construction point. Alternatively, select *Fast fix* from the pop-up menu in the *Point name* field.

Note – *In a real-time GNSS survey, Fast fix uses the Rapid point method. If you need more flexibility, select *Measure* from the pop-up menu in the *Point name* field.*

Typically, a construction point is used in *Cogo - compute points* or *Key in - lines and arcs*.

Construction points are stored in the General Survey database with autopoint names that increment from Temp0000. They are classified higher than check points and lower than normal points. For more information, see *Database search rules*.

To view construction points in a map or list, select them from the *Select filter* list. To view the *Select filter* list, in the :

- 2D map, tap the up arrow to access more softkeys and then tap *Filter*.
- 3D map, tap and then select *Filter*.

Check point

In a real-time GNSS survey, measure a point twice. Give the second point the same name as the first point. If the duplicate point tolerances are set to zero, the General Survey software warns that the point is a duplicate when you try to store it. Select *Store as check* to store the second point as a check class point. For more information, see *Duplicate point tolerance.*
Measuring points with a laser rangefinder

To measure laser points as offsets from a known point during a survey, you must first connect the laser rangefinder to the controller and configure the laser rangefinder in your survey style. For more information, see Configuring a survey style to use a laser rangefinder.

1. From the main General Survey screen, tap Measure.
2. Tap Measure laser points.
3. Enter the point name and a code for the point.
4. In the Start point field, do one of the following:
 a. Select the point you are measuring the laser point from.
 b. Measure a new point using the connected GNSS receiver. To do this:
 a. Select Measure in the Start point field.
 b. Enter the details for the point and then tap Measure.
 c. Tap Store.
 The software returns to the Measure laser points screen and the point you just measured is selected in the Start point field.
5. Enter the laser height and the target height.
 Note – If you are using the Geo7X laser rangefinder module, make sure you enter the height in the Laser height field in the General Survey software, not the laser rangefinder application.
6. Tap Measure.
7. Use the laser rangefinder to measure the distance to the target. The details for the measurement appear in the Measure laser points screen.
8. Tap Store.
 Note –
 a. If you enter a value for magnetic declination in the laser, make sure the Cogo settings value is set to zero.
 b. If the Geo7X laser rangefinder application is set to Magnetic, or your laser rangefinder is set to output magnetic azimuths, key in the declination value in Cogo settings.
 c. If the Geo7X laser rangefinder application is set to True, the Geo7X obtains the magnetic declination from an internal model and applies that to the azimuth readings. Make sure the Cogo settings value is set to zero.
 d. Allow the laser to settle for a few seconds before you take a measurement with it.
 e. If the General Survey software receives only a distance measurement from the laser, another screen is displayed with the measured distance in a Slope distance field. Enter a vertical angle if the measured distance was not horizontal.
 f. If you are using a laser without a compass, you must key in a magnetic azimuth before the General Survey software can store the point.

See also:
Compute point
Taped distances
Survey – Integrated

Integrated surveys

Using an integrated survey (IS) allows you to connect to both a GNSS receiver and a conventional instrument at the same time. You can perform an integrated survey using Trimble servo total stations and RTK surveys. For more information, see:

- Configuring an integrated survey style
- Starting an integrated survey
- Switching between instruments
- Ending an integrated survey
- Using the eBubble in an integrated survey
- Using an IS rover survey rod

Configuring an integrated survey style

An integrated survey style is created by referencing a conventional survey style and an RTK survey style, and then providing additional information specific to the integrated survey.

To configure an integrated survey style:

1. From the Trimble Access menu, tap Settings / Survey styles and then tap New.
2. Enter the Style name, set the Style type to Integrated Surveying and then tap Accept.
3. Select the Conventional and GNSS styles you want to reference for the integrated style and then tap Accept.
4. Enter the Prism to antenna offset.
5. Tap Accept and then tap Store to save the changes.

Note – When the IS rover option is enabled, the only way to change the GNSS antenna height in an integrated survey is to enter the height to the prism for the current target. The GNSS antenna height is computed automatically using the Prism to antenna offset configured in the IS style.
Starting an integrated survey

There are a number of ways to start an integrated survey. Use the method that best suits the way you work:

- Start a conventional survey and then start a GNSS survey at a later time.
- Start a GNSS survey and then start a conventional survey at a later time.
- Start an integrated survey. This starts a conventional survey and a GNSS survey at the same time.

To start an integrated survey, first create an integrated survey style, and then select Measure / <integrated survey style name>.

To start a single survey, and then start an integrated survey at a later time, begin your first survey as usual and then select Measure / Integrated surveying. Only the styles that are configured in the integrated survey style are available in an integrated survey.

Tip - When using an integrated survey you can measure points using GNSS during a Resection and Station Setup Plus.

Switching between instruments

In an integrated survey, the controller is connected to both devices at the same time. This makes switching between instruments very quick.

To switch from one instrument to another, do one of the following:

- Tap the Status line
- Select Measure / Switch to <survey style type>
- Tap Switch to and then select Switch to <survey style type>
- If the Trimble controller has configurable application/function keys, customize one of the keys to Switch to TS/GNSS and then press that key.

In an integrated survey, identify the instrument that is currently 'active' by looking at the Status bar or the Status line.

When you use the General Survey software in an integrated survey, there are some areas of functionality within the General Survey software where you cannot switch instruments. For example, if the current screen is Continuous topo.

For more information on how the different features behave, and the way to switch the feature to use the active instrument see the following sections:

Measure topo / Measure points

- If you switch instruments during an integrated survey when you are using Measure topo (conventional), the software automatically switches you to the Measure points (GNSS) screen (and vice versa).
- The point name defaults to the next available name.
- The code defaults to the last stored code.
- Switch instruments before you change the point name and code. If you enter a point name or code before switching instruments, they will not be the default after the switch.
Measure codes

- When you switch instruments, the active instrument is used for the next observation.

Continuous topo

- Only one Continuous topo survey is possible at one time.
- You cannot switch the instrument used in Continuous topo while Continuous topo is running.
- To change the instrument that is being used in Continuous topo, tap Esc to exit Continuous topo and then restart Continuous topo.
- You can switch instruments if the Continuous topo screen is open but running in the background. If you switch instruments when the Continuous topo screen is running in the background, and you later make the Continuous topo screen the active screen, the General Survey software automatically switches to the instrument with which you started Continuous topo.

Stakeout points, lines, arcs, alignments, and roads

- When you switch instruments, the graphical stakeout display changes.
- If you switch instruments when the Stakeout graphics screen is running in the background, and you later make the Stakeout graphics screen the active screen, the General Survey software automatically switches to the instrument you last used.
- If you switch instruments and a vertical offset to a DTM is specified in the survey style, the vertical offset from the survey style that was last added to the job is used (unless you manually change the vertical offset in the Map options or a Stakeout screen).

Ending an integrated survey

To end an integrated survey, you can end each survey individually, or select End integrated survey to end the GNSS survey and the conventional survey at the same time.

Using the eBubble in an integrated survey

If you are using a GNSS receiver with an in-built tilt sensor or an active target, the eBubble can be displayed, but for all conventional measurements Tilt auto-measure is not supported and no tilt warnings will be issued.

Tips

- Press CTRL + L to show or hide the eBubble.
- To move the eBubble, tap and hold on the eBubble then and drag it to a new position.
- Select Instrument / eBubble options to configure the eBubble. If you are connected to more than one sensor that has an eBubble, tap the appropriate softkey to view the eBubble options screen for each sensor.
- The receiver eBubble is aligned to the receiver’s LED panel. To operate the eBubble correctly, the LED panel must be facing you (that is, you must be looking directly at the receiver's LED panel).
IS rover survey rod

When surveying with an integrated survey style you can use an IS rover survey rod.

For more information, see:
 Configuring an IS rover
 Using an IS rover survey rod

Configuring an IS rover

The IS rover survey rod is configured as part of the integrated survey style.
When you configure the IS rover survey rod, enter the Prism to antenna offset. The offset is measured from the center of the prism to the position on the GNSS antenna. The position on the GNSS antenna is defined in the Rover options form of the GNSS survey style which is referenced by the integrated survey style.

The following table shows the offset distance from the center of the prism to the Trimble R8 antenna:

<table>
<thead>
<tr>
<th>Prism type</th>
<th>Offset measured to bottom of antenna mount</th>
</tr>
</thead>
<tbody>
<tr>
<td>VX/S Series MT1000</td>
<td>0.034 m</td>
</tr>
<tr>
<td>VX/S Series 360°</td>
<td>0.057 m</td>
</tr>
<tr>
<td>RMT606</td>
<td>0.033 m</td>
</tr>
<tr>
<td>Active Track 360</td>
<td>0.095 m</td>
</tr>
</tbody>
</table>

The following table shows the offset distance from the center of the prism to the Trimble R10 receiver antenna:

<table>
<thead>
<tr>
<th>Prism type</th>
<th>Offset measured to bottom of quick release</th>
</tr>
</thead>
<tbody>
<tr>
<td>R10 360°</td>
<td>0.028 m</td>
</tr>
<tr>
<td>VX/S Series MT1000</td>
<td>0.034 m</td>
</tr>
<tr>
<td>Active Track 360</td>
<td>0.095 m</td>
</tr>
</tbody>
</table>

Note – if an incorrect antenna measurement method is set, the incorrect offset is applied to the GNSS antenna heights.

Using an IS rover survey rod

In an integrated survey you must enable IS rover and use the target prism height to update the GNSS height automatically. When the IS rover option is enabled, a change to the conventional target height applies the Prism to antenna offset configured in the IS style and automatically updates the GNSS antenna height.

To change the IS rover height:
1. Ensure that the *Prism to antenna* offset is correctly configured and applies to the antenna *Type* and *Measured to* setting configured in the RTK style.

2. Tap the target icon in the status bar and select the appropriate target.

3. Enter the *Target height* (the height to the center of the prism).

 The updated height is not displayed in the Status bar until the target form is closed.

4. Tap *Antenna* to see the entered target height, style configured prism to antenna offset, and computed antenna height. This step is optional.

5. Tap *Accept*.

12 Survey – Integrated
Survey – Imaging

Trimble V10 imaging rover

The Trimble V10 imaging rover enables you to capture 360° panoramas. You can capture a panorama and associate it with any measured point, or you can combine capturing panoramas with your usual workflow for measuring points during a conventional survey or a GNSS survey. This requires connecting the following additional equipment to the quick release connector on the V10 camera head:

- For conventional surveys, connect any Trimble prism supported by the Trimble Access software.
- For GNSS surveys, connect any Trimble GNSS receiver that connects to a TSC3 controller or tablet running the Trimble Access software.

For more information, see:

- Equipment setup
- Height measurement methods
- Capturing panoramas when measuring a point in a conventional survey
- Capturing panoramas when measuring a point in a GNSS survey
- HDR imaging
- Attaching a panorama to a point
- Photo station coverage areas
- V10 camera calibration check
- V10 eBubble options
- V10 magnetometer calibration

Equipment setup

This section summarizes how to set up your equipment. For more information on equipment setup, refer to the Trimble V10 Imaging Rover User Guide.

Note – You should check the magnetometer calibration and camera calibration regularly.
The power rod is especially designed for use with the V10 imaging rover. The shock absorbing tip will dampen the G-force that the instrument is exposed to each time it is placed in position on the ground.

Attaching the camera head to the power rod or power mount

1. Put the camera head onto the power rod.
2. Turn the power rod until the keying is found.
3. Push the camera head into position.
4. Lock the camera head onto the power rod by screwing the locking collar until it stops.

Connecting a Trimble receiver to the V10

The Trimble R10 GNSS receiver connects directly to the V10 camera head. To connect any other Trimble integrated GNSS receiver to the V10 camera head, an adapter between the V10 quick release and the 5/8” thread of the GNSS receiver is needed. If the GNSS radio is used when connected to the V10 camera head, you must also use a specially tuned antenna. For more information, refer to the *Trimble V10 Imaging Rover User Guide*. Once you have fitted the adapter and antenna to the receiver, use the instructions below to connect the receiver to the V10.

Note – Before attaching the prism you must remove the quick release cover. To do this, hold the release cover and at the same time press the quick release button downward. While the quick release button is pressed, pull off the quick release cover.

1. Press the quick release button downward.
2. While the quick release button is pressed, connect the receiver to the camera head.
3. Release the quick release button.
4. Press the receiver down firmly so that the quick release locks in place. To get a water tight seal between the receiver and the camera head, the yellow rubber seal on the top of the camera must be compressed.

5. Make sure the quick release has locked correctly by checking that the quick release button has returned to the top position.

Connecting a Trimble prism to the V10

Note – Before attaching the prism you must remove the quick release cover. To do this, hold the release cover and at the same time press the quick release button downward. While the quick release button is pressed, pull off the quick release cover.

1. Mount the adapter to the prism.
2. Press the quick release button downward.
3. Line up the keying on the prism to the camera head quick release and while pressing the quick release button downward, connect the prism to the camera head. The prism may need to be turned to find the correct position.
4. Release the quick release button.
5. Press the prism down firmly so that the quick release locks in place. To get a water tight seal between the prism and the camera head, the yellow rubber seal on the top of the camera must be compressed.
6. Make sure the quick release has locked correctly by checking that the quick release button has
Survey – Imaging

returned to the top position.

Connecting the V10 to a controller

To attach the V10 to the controller, use the 1.5m USB to mini-USB cable provided by Trimble. Insert the USB connector into the controller and insert the mini-USB connector into the socket on the V10 camera head.

Height measurement methods

The measurement method used when connected to a V10 imaging rover depends on the other equipment you are using. The measurement method must match the measurement method selected in the software.

The following measurement methods are shown:

- V10 with Trimble prism mounted on the power rod
- V10 with Trimble prism fitted to a tripod
- V10 with Trimble receiver mounted on the power rod
- V10 with Trimble receiver fitted to a tripod
- V10 with custom prism and/or custom adapter

V10 with Trimble prism mounted on the power rod

Refer to the following diagram, where (1) is the V10, (2) is the prism, (3) is the bottom of the V10, (4) is the V10 photogrammetry center, (5) is the corrected height to the center of the prism from the
bottom of the pole, and (6) is the height from the bottom of the V10 to the center of the prism. For this value, refer to the table below the diagram.

<table>
<thead>
<tr>
<th>Prism</th>
<th>Adapter</th>
<th>Bottom of V10 to center of prism (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trimble R10 360, S-Series 360</td>
<td>One-piece</td>
<td>0.151</td>
</tr>
<tr>
<td></td>
<td>Adjustable two-piece</td>
<td>0.160</td>
</tr>
<tr>
<td>Trimble AT360, MT1000, S-Series</td>
<td>One-piece</td>
<td>0.255</td>
</tr>
<tr>
<td>traverse prism</td>
<td>Adjustable two-piece</td>
<td>0.264</td>
</tr>
</tbody>
</table>
V10 with Trimble prism fitted to a tripod

For high-accuracy measurements, or during calibration check, you must attach the V10 to the V10 power mount and then fit it to a tripod. Measure to the lever of the V10 extension.

Refer to the following diagram where (1) is the V10, (2) is the prism, (3) is the lever of the V10 extension, (4) is the V10 photogrammetry center, (5) is the corrected height to the center of the prism from the ground mark, (6) is the uncorrected height, and (7) is the height from the lever of the V10 extension to the center of the prism. For this value, refer to the table below the diagram.

![Diagram of V10 with Trimble prism](image)

<table>
<thead>
<tr>
<th>Prism</th>
<th>Adapter</th>
<th>Lever of V10 extension to center of prism (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trimble R10 360, S-Series 360</td>
<td>One-piece</td>
<td>0.451</td>
</tr>
<tr>
<td></td>
<td>Adjustable two-piece</td>
<td>0.460</td>
</tr>
<tr>
<td>Trimble AT360, MT1000, S-Series traverse prism</td>
<td>One-piece</td>
<td>0.554</td>
</tr>
<tr>
<td></td>
<td>Adjustable two-piece</td>
<td>0.563</td>
</tr>
</tbody>
</table>
V10 with Trimble receiver mounted on the power rod

Refer to the following diagram, where (1) is the V10, (2) is the receiver, (3) is the bottom of the V10, (4) is the V10 photogrammetry center, (5) is the corrected height to APC from the bottom of the pole, and (6) is the height from the bottom of the V10 to APC. For this value, refer to the table below the diagram.

<table>
<thead>
<tr>
<th>Receiver</th>
<th>Adapter</th>
<th>Bottom of V10 to APC (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trimble R10</td>
<td>None</td>
<td>0.247</td>
</tr>
<tr>
<td>Other Trimble integrated GNSS receiver</td>
<td>One-piece</td>
<td>0.185</td>
</tr>
<tr>
<td></td>
<td>Adjustable two-piece</td>
<td>0.194</td>
</tr>
</tbody>
</table>
V10 with Trimble receiver fitted to a tripod

For high-accuracy measurements, or during calibration check, you must attach the V10 to the V10 power mount and then fit it to a tripod. Measure to the lever of the V10 extension.

Refer to the following diagram, where (1) is the V10, (2) is the receiver, (3) is the lever of the V10 extension, (4) is the V10 photogrammetry center, (5) is the corrected height to APC from the ground mark, (6) is the uncorrected height, and (7) is the height from the lever of the V10 extension to APC. For this value, refer to the table below the diagram.

<table>
<thead>
<tr>
<th>Receiver</th>
<th>Adapter</th>
<th>Lever of V10 extension to APC (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trimble R10</td>
<td>None</td>
<td>0.546</td>
</tr>
<tr>
<td>Other Trimble integrated GNSS receiver</td>
<td>One-piece</td>
<td>0.484</td>
</tr>
<tr>
<td></td>
<td>Adjustable two-piece</td>
<td>0.493</td>
</tr>
</tbody>
</table>
V10 with custom prism and/or custom adapter

If you are using a V10 and set the *Quick release adapter* field to *Custom*, you must specify the
adapter base (1) to thread base (2):

<table>
<thead>
<tr>
<th>Adapter</th>
<th>Adapter base to thread base (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trimble One-piece</td>
<td>0.031</td>
</tr>
<tr>
<td>Trimble Adjustable Two-piece</td>
<td>0.022</td>
</tr>
</tbody>
</table>

If you are using a V10 with a custom prism, you must specify the distance from the prism base (3) to the prism center (4).
If you are using a V10 with a custom prism and a custom adapter, you must specify distance from the adapter base (1) to the prism center (4).
Refer to the following diagram, where (1) is the adapter base, (2) is the thread base, (3) is the prism base, and (4) is the prism center.

![Diagram](image)

Capturing panoramas when measuring a point in a conventional survey

In a conventional survey, you can capture a panorama when measuring a topo point if the *Method* is set to *Angles and distance* or *Averaged observations*.

1. Connect to the V10. For more information, see Trimble V10 imaging rover.
2. From the main General Survey menu, select *Measure / Measure points*.
3. Enter a value in the *Point name* field, and if required enter a feature code in the *Code* field.
4. Make sure the correct target type is selected. The target type is indicated by the prism icon in the status bar.
5. Select a measurement method and enter a value in the *Target height* field.

 Note – *Make sure the target height is measured to the bottom of the V10 if you are using the power rod or measured to the lever of the V10 extension if you are using a tripod.*
6. Select *Custom adapter* if you have inserted an extension between the adaptor and the prism, and then enter the height for the extension.
7. Tap Options to configure the tilt settings and HDR settings, if you have not already done so.
8. Select the Panorama check box.
9. Use the V10 eBubble to ensure the prism is level before you measure the point. Note that when both a V10 and an active target are connected, the information shown in the eBubble is streamed from the active target.

 Note – You must use a bipod to keep the power rod vertical and steady during panorama capture.
10. Tap Start to start recording data.
11. To store the point, tap Store.

 The panorama is captured after you tap Store.
12. Tap Store to store the panorama.

 Panorama images are saved to the `<jobname> Files\V10 Panorama Files` folder. The relative path must be maintained when importing data into Trimble Business Center, otherwise the software will not be able to find the panoramas.

Tips
- In the Panorama screen, tap the thumbnail to view the larger image.
- Tap Redo to recapture the panorama. Tap Discard to discard the panorama and delete the point. Tap Esc to discard only the panorama.

Note – To capture a panorama for a point that you key in or select from a list, see Attaching a panorama to a point.

Capturing panoramas when measuring a point in a GNSS survey

During a GNSS survey, you can capture a panorama when measuring a Topo point, Observed control point, Calibration point or Rapid point.

1. Connect to the V10. For more information, see Trimble V10 imaging rover.
2. From the main General Survey menu, select Measure / Measure points.

 Note – In a GNSS survey if you are using an Internet connection for your corrections, and your Internet connection is established prior to starting the survey, then you must disconnect the V10 from the controller in order to start the survey. Otherwise the survey will not start and in some instances the connection to the GNSS receiver may be disconnected.
3. Enter a value in the Point name field, and if required enter a feature code in the Code field.
4. Select a measurement method.
5. Enter a value in the Antenna height field and make sure that the setting in the Measured to field is set to Bottom of V10 if you are using the power rod or set to Lever of V10 extension if you are using a tripod.
6. Select Custom adapter if you have inserted an extension between the adapter and the receiver, and then enter the height for the extension.
7. Tap Options to configure the quality control, precision, tilt settings, and HDR settings, if you have not already done so.

8. Select the Panorama check box.

9. Use the eBubble to ensure the antenna is level before you measure the point. Note that when both a V10 and an Trimble R10 receiver are connected, the information shown in the eBubble is streamed from the Trimble R10 receiver.

 Note – You must use a bipod to keep the power rod vertical and steady during panorama capture.

10. When the antenna is vertical and stationary, tap Start to start recording data. The static icon appears in the status bar.

11. When the preset occupation time, precisions, and tilt tolerance have been reached, tap Store. The panorama is captured after you tap Store.

12. Tap Store to store the panorama.

 Panorama images are saved to the <jobname> Files\V10 Panorama Files folder. The relative path must be maintained when importing data into Trimble Business Center, otherwise the software will not be able to find the panoramas.

 Tips
 - In the Panorama screen, tap the thumbnail to view the larger image.
 - Tap Redo to recapture the panorama. Tap Discard to discard the panorama and delete the point. Tap Esc to discard only the panorama.

 Note – To capture a panorama for a point that you key in or select from a list, see Attaching a panorama to a point.

HDR imaging

The V10 imaging rover enables you to capture high dynamic range (HDR) images. With HDR turned on, the V10 captures three images rather than one image, each with different exposure settings. Immediately after image capture, the V10 processes the images to produce a single composite image, which has better tonal range and can therefore show more detail than any of the individual images.

Enabling HDR

1. Open the measurement method options screen. To do this, do one of the following:
 - In the Measure point screen, tap Options.
 - In the V10 Panorama screen, tap Options.
 - When configuring the survey style, select Measurement method options.

2. Select the HDR check box.

 HDR appears next to the V10 icon in the status bar 🌡️HDR to indicate that HDR is turned on.
Note –

- The V10 imaging rover must have firmware version E1.0.xx or later.

Attaching a panorama to a point

When the controller is connected to a V10 imaging rover, you can capture a panorama for a point that you key in or select from a list.

Note – You do not need to have started a survey or be connected to any other sensor to do this.

1. Tap Instrument / V10 Panorama.
2. Enter the point name or select the point from a list.
 - If you enter a point name that does not exist, then North, East, and Elevation fields allow you to key in the coordinates.
 - To capture a panorama for a point that has no coordinates, leave the coordinate fields in this screen empty.
3. Enter the Instrument height, measured to the bottom of the V10 if you are using the power rod or measured to the lever of the V10 extension if you are using a tripod. To set this, tap the arrow beside the Height field and then select the appropriate method.
4. Select Custom adapter if you have inserted an extension between the adapter and the prism or receiver, and then enter the height for the extension.
 - Note – You must use a bipod to keep the power rod vertical and steady during panorama capture.
5. Use the eBubble to check the tilt of the pole. The eBubble in the V10 Panorama screen always shows tilt information for the V10 imaging rover, even if another tilt sensor is connected. When the bubble is within the tilt tolerance, tap Start to capture the panorama.
6. In the Panorama screen, tap the thumbnail to view the larger image. Tap Store to store the panorama. Tap Redo to recapture the panorama. Tap Esc to discard the panorama.

Panorama images are saved to the <jobname> Files\V10 Panorama Files folder. The relative path must be maintained when importing data into Trimble Business Center, otherwise the software will not be able to find the panoramas.

V10 photo station coverage areas

If you have a job with photo stations attached to a point with coordinates then a coverage area for the photo station is displayed in the map. The photo station coverage area shown depends on whether you are in the map or the 3D map. The coverage area indicates the area captured for the photo station, with the lines shown at ground level. The software uses the instrument height for the V10 panorama and assumes the ground is level.

Note – The photo station coverage area is oriented to match the orientation of the camera head. For the photo station coverage area to be oriented correctly, you must set the magnetic declination for the job. To do this, from the main General Survey menu tap Jobs / Properties of job / Cogo settings.
To control whether photo station coverage areas are displayed, toggle them on or off using the Select filter list. To view the Select filter list, in the:

- 2D map, tap the up arrow to access more softkeys and then tap Filter.
- 3D map, tap and then select Filter.

Photo station coverage areas in the map

The downward facing cameras capture the area between bounding lines 1 and 2. The outward facing cameras capture the area from bounding line 3 outward.

Photo station coverage areas in the 3D map

The downward facing cameras capture the area between bounding lines 1 and 2. The outward facing cameras capture the area from bounding line 3 outward. Line 4 is an arbitrary outer limit.

V10 camera calibration check

To check the camera calibration of the V10 imaging rover, perform the camera field calibration check and then process the job containing the camera calibration data in Trimble Business Center.
Calibration check images are saved to the `<jobname> Files\V10 Panorama Files` folder. The relative path must be maintained when importing data into Trimble Business Center, otherwise the software will not be able to find the images.

Note – *The camera calibration check does not calibrate or "correct" the camera. It is a process used to collect images to evaluate if the calibration of the cameras is still within specifications.*

1. Select V10 settings.
2. Tap Check.
3. Enter the distance from the V10 to the wall where you will mount the wall target, ensuring it is within prescribed limits.
4. Enter the height of the instrument, ensuring it is within prescribed limits.
5. Tap Next.
6. Position the targets as shown in the software, within the prescribed limits.
7. Enter the distance from the wall to the center of the wall target.
8. Enter the distance from the wall to the center of the floor target.
9. Tap Next.
10. Rotate the V10 until the red line runs through the center of the target. Tap Next to save the image pair. Repeat this step until you have captured all image pairs.

For more information, refer to the *Trimble V10 Imaging Rover User Guide*.

V10 eBubble options

The V10 has inbuilt tilt sensors so an eBubble (electronic bubble) is available.

Note – *If another tilt sensor is connected as well as the V10, then the V10 eBubble appears only in the V10 Panorama screen. Elsewhere in the Trimble Access software, the eBubble shows information from the other tilt sensor. For more information, see Receiver eBubble options and AT360 eBubble options.*

To configure the V10 eBubble, tap *Instrument / eBubble options* from the main menu. You can configure the following settings:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>eBubble sensitivity</td>
<td>The bubble moves 2mm for the specified sensitivity angle. To decrease sensitivity select a large angle.</td>
</tr>
<tr>
<td>Tilt tolerance</td>
<td>Defines the maximum radius that the V10 can tilt and be considered in tolerance. The allowable range is 0.001m to 1.000m. The tilt distance shown is calculated using the current antenna height.</td>
</tr>
<tr>
<td>eBubble response</td>
<td>Controls the eBubble’s responsiveness to movement.</td>
</tr>
</tbody>
</table>
Tip - You can also access the V10 eBubble options screen by doing one of the following:
- Tap the Settings icon in the top left corner of the eBubble window.
- Tap the V10 softkey from the eBubble options screen for a different sensor. If you have more than one tilt sensor connected, changing the eBubble settings for one sensor changes the eBubble settings for all connected tilt sensors.

eBubble display
To display the eBubble, tap the eBubble softkey.

<table>
<thead>
<tr>
<th>Bubble color</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>You are within the defined tilt tolerance.</td>
</tr>
<tr>
<td>Red</td>
<td>You are outside the defined tilt tolerance.</td>
</tr>
</tbody>
</table>

Tips
- To move the eBubble window to a new position on the screen, tap and hold on the eBubble and drag to a new position.
- Press CTRL + L to show or hide the eBubble from any screen.

V10 magnetometer calibration
The magnetometer calculates the direction that the V10 imaging rover is facing so that the panoramas can be oriented correctly. Trimble recommends calibrating the magnetometer whenever the configuration of equipment on the power rod changes, for example, if you add or remove a Trimble receiver or prism.

WARNING - The performance of the magnetometer is affected by nearby metal objects (for example, vehicles or heavy machinery) or objects that generate magnetic fields (for example, high voltage overhead or underground power lines). Always calibrate the magnetometer away from sources of magnetic disturbance. In practice this usually means outdoors.

Note – Calibrating the magnetometer near sources of magnetic disturbance does not "correct" for the interference caused by these objects.

Calibrating the magnetometer
1. In the Instrument screen, tap eBubble options and then tap Calib.
2. To perform the magnetometer calibration, tap Calibrate.
3. Tap Start and then rotate the V10 as shown on-screen, until calibration is complete.

Note –
- If the V10 suffers severe abuse such as a pole drop, you should recalibrate the magnetometer.
- If you tap Cancel before the calibration is complete, the existing magnetometer calibration is used.
- The runtime displayed for the V10 in the Calibration screen is the amount of time the V10 has
been running since the last calibration.

- The details of the calibration are stored in the job and can be reviewed from Jobs / Review job.
Survey – Stakeout

Stakeout – Overview

In a real-time GNSS survey or a conventional survey, you can stake out points, lines, arcs, polylines, alignments, roads, and DTMs.

To stake out an item:
- Define the item to be staked out.
- From the map, or from Stakeout, select the item to be staked out.
- Navigate to the point, or direct the person holding the rod to the point.
- Mark the point.
- Measure the point (optional).

You can define the item to be staked out:
- in the Key in menu
- with a linked CSV or job file
- from lines and arcs uploaded with the job file
- from an active map file
- from an alignment (.rxl) or road (.rxl, crd, .inp, .mos, or .xml)

To stake out a line between two points without keying the line into the job database, you can select two points from the map, tap and hold in the map to access the pop-up menu and then select Stakeout line.

To use GNSS to stake out lines, arcs, Digital Terrain Models, and alignments, you must define a projection and datum transformation.

WARNING - Do not change the coordinate system or calibration after you have staked out points.

For more information, see:

- **Arcs**
- **Lines**
- **Points**
- **Alignments** (polylines)
- **DTMs**
- **Elevations**
- **Stakeout - Display mode**
Configuring the stakeout display mode

The display varies depending on whether you are performing a Conventional or GNSS survey.

Conventional surveys

For a conventional survey the Stakeout graphical display screen displays directions using the conventional instrument as a reference point.

For a conventional survey, you can configure the Stakeout directions and the Display mode of the Stakeout graphical display.

Offset & Stakeout directions allows you to configure the stakeout directions to be from an instrument perspective, target perspective, or automatic. Automatic configuration sets the stakeout directions automatically, based on whether you have a servo connection or a robotic connection to the instrument:

Display mode allows you to configure the graphical navigation display.

When the Display mode is set to Direction and distance, the navigation screen displays:

- A large arrow pointing in the direction you have to move. When you are close to the point, the arrow changes to the in/out and left/right directions, relative to the instrument.

When the Display mode is set to In/out and left/right, the navigation screen displays:

- In/out and left/right directions, with the conventional instrument as a reference point.

To configure the display:

1. From the Trimble Access menu, tap Settings / Survey styles / <Style name> / Instrument.
2. Set the Offset & Stakeout directions:
 - Automatic - navigation directions are from Instrument perspective (during a servo connection), or Target perspective (during a robotic survey).
 - Instrument perspective (standing behind the instrument) - in/out and left/right navigation directions given from an instrument perspective, looking from the instrument towards the target.
 - Target perspective (standing at the target) - in/out and left/right navigation directions given from a target perspective, looking from the target towards the instrument.
3. Tap Accept, and then select Stakeout.
4. Set the Display mode:
 - Direction and distance - navigate using the large arrow, similar to GNSS stakeout. When you are close to the point, the display automatically changes to the in/out and left/right display.
 - In/out and left/right - navigate using in/out and left/right directions, with the instrument as a reference point.
Choose a setting in the Deltas (points) and Deltas (other) fields. The two deltas fields allow you to configure one delta default for point stakeout, and the other deltas default for arc, line, alignment and road stakeout.

- Distances - navigate to a point using distances only
- Delta grid - navigate to a point using delta grid values
- Station and offset - navigate to a point using station and offset when staking a line or arc.

When staking to the line or arc the station and offset view displays the Station, H.offset, V.Dist and the Grade.

When staking to the Station on the line / arc or the Station/offset from line / arc the view displays the Station, H.offset, V.dist, delta Station and delta H.offset.

Use the Distance tolerance field to specify the allowable error in distance. If the target is within this distance from the point, the graphical stakeout display indicates that the distance(s) is correct.

Use the Angle tolerance field to specify the allowable error in angle. If the conventional instrument is turned away from the point by less than this angle, the graphical stakeout display indicates that the angle is correct.

If a DTM file has been transferred into the General Survey software, you can select the Display cut/fill to DTM check box, and the graphical display screen will display the cut or fill relative to that DTM. Use the DTM field to specify the name of the DTM to be used. If necessary, specify a vertical offset to raise or lower the DTM. Tap and select whether the offset is to be applied vertical or perpendicular to the DTM.

Note – All DTM files from all folders are listed.

Alternatively, tap Options from the Stakeout screen to configure the settings for the current survey.

GNSS surveys

For a real-time GNSS surveys, you can set the mode of the Stakeout graphical display so that the point stays fixed in the center of the screen, or so that your position stays fixed in the center of the screen.

To configure the display:

1. From the Trimble Access menu, tap Settings / Survey styles / <style name>/ Stakeout.
2. In the Display mode, select either Target centered, or Surveyor centered.
3. Choose a setting in the Deltas field. The options are:

 - Azimuth and distance - navigate to a point using azimuth and distance
 - Delta grid - navigate to a point using delta grid values
 - Station and offset - navigate to a point using station and offset
 - Forward / Backward - navigate to a point using distances with "Go forward/back" and "Go left/right" commands

When staking To the line or arc the station and offset view displays the Station, H.offset, V.Dist and the Grade.

When staking to the Station on the line or arc, or the Station/offset from line or arc the view displays the Station, H.offset, V.Dist, delta Station and delta H.offset.
4. Choose a setting in the Display orientation field. The options are:
 - Direction of travel - the screen will orientate so that the top of the screen points in the direction of travel.
 - North / Sun - the small orientation arrow shows the location of North or the sun. The screen will orientate so that the top of the screen points toward North or the sun. When using the display, tap the North/Sun softkey to toggle the orientation between north and the sun.
 - Reference azimuth:
 - For a point the screen will orientate to the azimuth specified when the Stake option is set to Relative to azimuth.
 - For a line the screen will orientate to the azimuth of the line.

 Note –
 - If, when staking a point, the Display orientation is set to Reference azimuth and the Stake option is not set to Relative to azimuth the display orientation behavior will default to Direction of travel.
 - When using the controller’s internal compass, the compass is ignored if the Display orientation is set to North or Reference azimuth.

5. If a DTM file has been transferred into the General Survey software, you can select the Display cut/fill to DTM check box, and the graphical display screen will display the cut or fill relative to that DTM. Use the DTM field to specify the name of the DTM to be used. If necessary, specify a vertical offset to raise or lower the DTM. Tap , and select whether the offset is to be applied vertical or perpendicular to the DTM.

 Note – All DTM files from all folders are listed.

Alternatively, tap Options from the Stakeout screen to configure the settings for the current survey.

Using the graphical display during stakeout

The graphical display in Stakeout helps you to navigate to a point. The display varies depending on whether you are performing a Conventional or GNSS survey.

Tip - Depending on the controller you are using, you may be able to use the internal compass to aid navigation. See Compass for further details.

Conventional

To use the graphical display in a conventional survey:

If you are using the Direction and distance mode:

1. Hold the display screen in front of you as you walk forwards in the direction that the arrow is pointing. The arrow points in the direction of the point.

2. When you get to within 3 meters (10 feet) of the point, the arrow disappears, and the in/out and left/right directions appear, with the instrument as a reference point. Follow the instructions below to navigate in this mode.
Note – When navigating to the position, a grid is displayed as you near the target and when the large navigation arrow disappears. The grid changes scale as you move closer to the target.

If you are using the in/out and left/right mode:

1. The first display shows which way the instrument should be turned, the angle that the instrument should display and the distance from the last point staked to the point currently being staked.
2. Turn the instrument (two outline arrows will appear when it is on line), and direct the rod person on line.
 - If you are using a servo instrument, and the Servo auto turn field in the survey style is set to HA & VA, or HA only the instrument automatically turns to the point.
 - If you are working robotically, or when the Servo auto turn field in the survey style is set to Off, the instrument does not turn automatically. To turn the instrument to the angle indicated on the screen, tap Turn.
3. If the instrument is not in TRK mode, tap Measure to take a distance measurement.
4. The display shows how far the person holding the rod should move towards or away from the instrument.
5. Direct the person holding the rod, and take another distance measurement.
6. Repeat steps 2 - 5 until the point has been located (when four outline arrows are displayed), then mark the point.
7. If a measurement to the target is within the angular and distance tolerances, tap Store at any time to accept the current measurement.
 - If the instrument is in TRK mode and you require a higher precision distance measurement, tap Measure to take an STD measurement and then tap Store to accept that measurement.
 - To discard the STD measurement and return the instrument to TRK mode, tap Esc.
 - If you are operating a robotic instrument remotely from the target:
 - the instrument automatically tracks the prism as it moves
 - the instrument continuously updates the graphical display
 - the graphical display is reversed and the arrows are shown from the target (prism) to the instrument

GNSS

When you use the graphical display in a GNSS survey to navigate to a point, the screen first shows a large navigation arrow when you are some distance away from the point and then automatically changes to a bull's-eye target as you move in closer.

Note – When the Display orientation is set to Direction of travel:
- The arrow assumes that you are moving forward at all times.
- The bull's eye target does not assume that you are moving forward.

Tap the North/Sun softkey to change the reference point used by the small orientation arrow.
To use the graphical display in a GNSS survey:

1. Hold the display screen in front of you as you walk forwards in the direction that the arrow is pointing. The arrow points in the direction of the point that you intend to measure.
2. When you get to within 10 feet (3 meters) of the point, the arrow disappears and a bull's-eye target appears.
 When the bull's-eye target is displayed, do not change your orientation. Keep facing in the same direction and only move forwards, backwards, left or right.
 Note – When staking a Point, Line, Arc or Alignment a grid is displayed as you near the target and when the large navigation arrow disappears. The grid changes scale as you move closer to the target.
3. Continue moving forwards until the cross, representing your current position, covers the bull's-eye target, representing the point. Mark the point.

Stakeout options

Configure the stakeout settings when you create or edit a survey style.
Select **Stakeout** and set the **As-staked point details**, and **Stakeout display mode**.
If you do not want the total station EDM set to TRK mode when you enter stakeout, clear the **Use TRK for stakeout** check box.
Alternatively, tap **Options** from the **Stakeout** screen to configure the settings for the current survey.
If you do not want the point removed from the stake out point list after it has been staked, clear the **Remove staked point from list** check box.
Tap **Options** from the **Stakeout** screen to enable/disable the internal **compass**. See **Controllers** to check if your controller has an internal compass.
In a GNSS survey, select the **Auto measure** option to automatically start measuring when the **Measure** key is tapped.

As-staked point details

Configure the **As-staked point** details either in the **Stakeout** option, when you create or edit a survey style, or by tapping **Options** in the **Stakeout** screen.
You can configure the **View before storage**, **Horizontal tolerance**, **Staked deltas format**, **As-staked name**, **As-staked code**, and **Store grid deltas**.

View before storage and horizontal tolerance

If you want to see the differences between the design point and the as-staked point before you store the point, select the **View before storage** check box and then choose one of these options:

- To see the differences every time, set the Horizontal tolerance to 0.000 m.
- To see the differences only if the tolerance is exceeded, set the Horizontal tolerance to a suitable value.
Note – The Stake delta values are reported as differences from the measured/as-staked point to the design point.

User definable stakeout reports (staked deltas format)

The General Survey software supports user-definable stakeout reports, which enable you to configure the display of staked information on the Confirm staked deltas screen that appears when you enable View before storage.

User definable stakeout reports can offer the following benefits:

- important information can be displayed first
- the data can be ordered to suit the user’s requirements
- information that is not required can be removed
- additional data can be computed for display, for example by applying construction offsets to reported values
- the point design elevation can be edited after the stake out measurement is completed
- up to 10 extra design elevations with individual vertical offset values can be defined and edited, with the cut/fill to each extra design elevation being reported

Formatting of the staked deltas screen also supports the following settings:

- the size of the font for prompts
- the size of the font for reported values
- the color of the font for prompts
- the color of the font for reported values
- widescreen on or off

The content and format of the stakeout reports is controlled by XSLT style sheets. Translated default XSLT Stakeout Style Sheet (*.sss) files are included with the language files, and accessed by the General Survey software from the language folders. You can create new formats in the office and then copy them to the [System files] folder on the controller.

From the Staked deltas format field, select an appropriate display format.

The following list shows the translated stakeout reports that are supplied with the language files, and the support offered by those reports:

- Point - Stake markup
 Provides a simplified stakeout display that presents the vertical distance (cut/fill) to the design point. The vertical distance to a DTM will also be displayed if applicable.

- Point - Stake multiple elevs
 Provides a stakeout display that allows you to edit the point design elevation (the cut/fill value will be updated) and entry of up to two extra design elevations with associated vertical offsets and updated cut/fill values.

- Line - Stake markup
 Provides a simplified stakeout display that presents the vertical distance (cut/fill) to the design position. The appropriate station and offset values are reported, based on the selected line stakeout method.
• Arc - Stake markup
 Provides a simplified stakeout display that presents the vertical distance (cut/fill) to the design position. The appropriate station and offset values are reported, based on the selected arc stakeout method.

• DTM - Stake markup
 Provides a simplified stakeout display that presents the vertical distance (cut/fill) to the DTM being staked.

If the Roads application is installed, the following additional translated stakeout reports are available:

• Road - Catch + offsets
 Provides details of all the standard road staked deltas plus a list of the horizontal and vertical distances to each of the cross-section positions from the staked offset position. The reported horizontal and vertical distances include the applied horizontal and vertical construction offsets.

• Road - Stake markup
 Provides a simplified stakeout display that presents the vertical distance (cut/fill) to the road design position. Appropriate station and offset values and cross-section details (in the case of catch point staking) are reported, based on the road stakeout method.

• Road - XS details
 Provides all the standard road staked deltas details as well as a list of the cross-section elements (left and right) that define the design cross-section at the selected station.

If the Pipelines application is installed, the following additional translated stakeout reports are available:

• Pipelines - Alignment stakeout
 Provides details of all the standard alignment staked deltas plus the ahead and behind station values are now reported for positions measured in the internal and external angles of non-tangential intersection points in the alignment.
 Select this Staked delta format when staking a pipeline alignment.

• Pipelines - Points stakeout
 Provides details of all the standard point staked deltas plus the ahead and behind station values are now reported for positions measured in the internal and external angles of non-tangential intersection points in the alignment.
 Select this Staked delta format when staking points.
Refer to the diagram where:

1. Staked point
2. Ahead station
3. Ahead offset
4. Back station
5. Back offset

Tip - When you use multiple Stakeout Style Sheet files, Trimble recommends that you set the Staked deltas format. From the Trimble Access menu, tap **Settings / Survey styles / <Style name> / Stakeout**, to configure unique formats for Points, Lines, Arcs, DTM, and Roads. You can also select the format within **Options** during stakeout.

Note – The development of the XSLT style sheets is an advanced procedure recommended for users with programming experience. For more information, please refer to the stylesheets available at Trimble Access Downloads (www.trimble.com/support_trl.aspx?Nav=Collection-62098).

As-staked name and as-staked code

You can set the **name** of the As-staked point to be one of the following:

- the next **Auto point name**
- the **Design point name** (not available for roads)

You can also set the **code** of the As-staked point to be one of the following:

- **Design name**
- **Design name (with prefix)**
- **Design name (with suffix)**
- the next **Auto point name**
- **Design code**
- **Last code used**
- **Design station and offset**

For the design name options that have a prefix or suffix, complete the **Prefix/Suffix** field as required.

Note – The design name options are available only when staking points.

The **Description** defaults as follows:

- When staking a point, line or arc with descriptions, the description of the as-staked point will default to the description of the design entity unless the **As-staked** code is set to **Last code used** in which case the last used description is used.
When staking a road using the Roads application, the description will always be the last used independent of the As-staked code setting.

Store grid deltas

Set the Store grid deltas check box. Do one of the following:
- Select the check box to display and store the delta northing, delta easting, and delta elevation during stakeout.
- Clear the check box to display and store the deltas as a horizontal distance, vertical distance, and azimuth.

Note – *If you use a user definable stakeout report, the Store grid deltas option is not used, unless it is referenced in your report.*

Staking out points

There are many ways to stake a point. Select the method that suits you best:
- From the Map - single point
- From the Map - using a list
- From Stakeout / Points- single point
- From Stakeout / Points- using a list
- From Stakeout / Points- using a CSV/TXT file

For more information, see:
- GNSS stake methods
- Editing the design elevation
- Offsetting a point

Tip – When using a GNSS receiver with an in-built tilt sensor, you can:
- Tap eBubble to display an electronic bubble
- Configure the survey style to prompt a warning when the pole is outside a specified Tilt tolerance
- Tap Options to configure the quality control, precision, and tilt settings.

Staking a single point from the Map

1. From the map, do one of the following:
 - Select the point to be staked out and then tap Stakeout.
 - Double-tap the point to be staked.
2. Do one of the following:
 - In a GNSS survey:
 - If the antenna height is null, select the Stake method, enter the Antenna height, and set the Measured to field appropriately and then tap Start.
 - If the antenna height was configured in the survey style, or recently entered, you are not prompted to enter the antenna height again.
 To change the antenna height, tap the antenna icon in the status bar and then enter the new value in the screen that appears. Tap Accept.
 - In a conventional survey:
 - To change the target height, tap the target icon in the status bar, tap the antenna height field and then enter the new value in the screen that appears. Tap Accept.
3. Use the graphical display to navigate to the point.
 If required, edit the design elevation.
4. When the point is within tolerance, measure the point.
 When the point has been stored, you are returned to the map. The selection of the point that was just staked has been removed.
5. Select another point to stake and then repeat the process.

Staking a group of points from the Map

1. From the map, select the point(s) to be staked out. Tap Stakeout.
 If you have selected more than one point from the map for staking out, the Stake out points screen appears. Go to the next step. If you have selected one point from the map, go to step 4.
2. The Stake out points screen lists all points selected for stakeout. To add more points to the list, do one of the following:
 - Tap Map and then select the required points from the map. Tap Stakeout to return to the Stake out points screen.
 - Tap Add and then add points using one of the methods listed to add more points to the list.
3. To select a point for stake out, do one of the following:
 - Tap the point name.
 - Use the controller arrow keys to highlight the point and then tap Stakeout.
4. Do one of the following:
 - In a GNSS survey:
 - If the antenna height is null, select the Stake method, enter the Antenna height, and set the Measured to field appropriately and then tap Start.
 - If the antenna height was configured in the survey style, or recently entered, you are not prompted to enter the antenna height again.
 To change the antenna height, tap the antenna icon in the status bar and then enter the new value in the screen that appears. Tap Accept.
In a conventional survey:
- To change the target height, tap the target icon in the status bar, tap the antenna height field and then enter the new value in the screen that appears. Tap Accept.

5. Use the graphical display to navigate to the point.
 If required, edit the design elevation.

6. When the point is within tolerance measure the point.
 When the point has been stored, the point is removed from the stake out list and you are returned to the stake out point list.

7. Select the next point and then repeat the process.

Staking a single point from the Stakeout menu

1. From the main menu, select Stakeout / Points.
2. Make sure that you are in the stake a single point mode:
 - If a Point name field is displayed, stake out point is in the stake a single point mode.
 - If a stake out point list is displayed, stake out point is in the stake from a list mode. Tap > Point to change to the stake a single point mode.
3. Enter the name of the point to stake, or tap the pop-up arrow and then select a point using one of the following methods:

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>List</td>
<td>Select from a list of all points in the current job and linked files.</td>
</tr>
<tr>
<td>Wildcard search</td>
<td>Select from a filtered list of all points in the current job and linked files.</td>
</tr>
<tr>
<td>Key in</td>
<td>Key in the coordinates of the point to stake.</td>
</tr>
</tbody>
</table>

 Tip - Tap Closest to automatically populate the Point name field with the name of the closest point. Closest searches the current job and all linked files to find the closest point that is not an as-staked point or a design point for the as-staked points.
4. Enter the Point increment and then tap Stakeout. Do one of the following:
 - To return to the stake out point screen after staking a point, enter an increment of 0 or ?.
 - To stay in the graphical stake out display and automatically increment to the next point, enter a valid increment value.

 If a point does not exist using the increment specified, tap Cancel to return to this form after staking a point. Alternatively, tap the Search button to find the next available point.

 You can use a decimal point increment, for example 0.5. You can also increment the numeric component of a point name that ends in alpha characters, for example, you can increment 1000a by 1 to 1001a. To do this, tap the advanced pop-up arrow on the point increment field and then clear the Apply to numeric only setting.

5. Do one of the following:
In a GNSS survey:
- If the antenna height is null, select the Stake method, enter the Antenna height, and set the Measured to field appropriately and then tap Start.
- If the antenna height was configured in the survey style, or recently entered, you are not prompted to enter the antenna height again. To change the antenna height, tap the antenna icon in the status bar and then enter the new value in the screen that appears. Tap Accept.

In a conventional survey:
- To change the target height, tap the target icon in the status bar, tap the antenna height field and then enter the new value in the screen that appears. Tap Accept.

6. Use the graphical display to navigate to the point.
 If required, edit the design elevation.

7. When the point is within tolerance measure the point.

8. When the point has been stored, the increment value is used to determine the next point to stake:
 - If the next point using the increment value exists, you remain in the stake out graphics screen with the navigation details updated for the next point.
 - If the next point does not exist, tap Cancel to return to the stake out point screen where you can enter the name of the next point to stake. Alternatively, tap the Search button to find the next available point.

Tip - When using stake a single point mode, you can still use a stake point list to ensure that you stake all required points. To do this, build the stake list, make sure that Remove staked point from list is enabled, and stake points using the stake a single point mode. As points are staked they will be removed from the stake list. Tap > List as required to check which points still need to be staked.

Staking a group of points from the Stakeout menu

1. From the main menu, select Stakeout / Points.

2. Make sure that you are in the stake out list mode:
 - If a stake out point list is displayed, stake out point is in the stake from a list mode.
 - If a Point name field is displayed, stake out point is in the stake a single point mode. Tap > List to change to the stake from a list mode.

3. The Stake out points screen lists all points selected for stake out. The list may already contain points that were added to the list previously but not staked out.
 Tap Add and add points using one of the methods listed to add more points to the list.

4. To select a point for stake out, do one of the following:
 - Tap the point name.
 - Use the controller arrow keys to highlight the point and then tap Stakeout.

5. Do one of the following:
In a GNSS survey:
- If the antenna height is null, select the Stake method, enter the Antenna height, and set the Measured to field appropriately and then tap Start.
- If the antenna height was configured in the survey style, or recently entered, you are not prompted to enter the antenna height again.
 To change the antenna height, tap the antenna icon in the status bar and then enter the new value in the screen that appears. Tap Accept.
- In a conventional survey:
 - To change the target height, tap the target icon in the status bar, tap the antenna height field and then enter the new value in the screen that appears. Tap Accept.

6. Use the graphical display to navigate to the point.
 If required, edit the design elevation.

7. When the point is within tolerance measure the point.
 When the point has been stored, the point is removed from the stake out list and you are returned to the stake out point list.

8. Select the next point and then repeat the process.

Staking out points from a CSV/TXT file or another job

There are many ways to stake out points in a linked file; from linked points displayed in the map, or using various methods to build a stake out list.

This section describes how to build a stake out list from a CSV/TXT or Job file that does not need to be linked:

1. From the main menu, select Stakeout / Points.
2. Make sure that you are in the stake out list mode:
 - If a stake out point list is displayed, stake out point is in the stake from a list mode.
 - If a Point name field is displayed, stake out point is in the stake a single point mode. Tap > List to change to the stake from a list mode.
3. Tap add and choose Select from file.
4. Choose the file from which to select points to add to the stake out list. Do one of the following:
 - Tap the file.
 - Use the controller arrow keys to highlight the file and then tap Accept.
5. If Advanced Geodetics is enabled, and you select a CSV or TXT file, you must specify if the points in the linked file are Grid points or Grid (local) points.
 - Select Grid points if the points in the CSV/TXT file are grid points.
 - Select Grid (local) points if the points in the CSV/TXT file are Grid (local) points and then select the input transformation to transform them to grid points.
 - To assign the transformation later, select Not applied, this will be defined later, and then tap Accept.
To create a new display transformation, select *Create new transformation*, tap *Next* and then complete the *required steps*.

To select an existing display transformation, select *Select transformation*, select the display transformation from the list and then tap *Accept*.

6. All the points in the selected file are listed. To check the points that are to be added to the list, do one of the following:
 - Tap *All*. A check mark appears beside every name.
 - Tap the point names. A check mark appears beside the name of each point that you selected.

 Note – *Points in the CSV/TXT/JOB file that are already in the stake out list do not appear and cannot be added again to the list.*

7. Tap *Add* to add the points to the stake out list.

8. To select a point for stake out, do one of the following:
 - Tap the point name.
 - Use the controller arrow keys to highlight the point and then tap *Stakeout*.

9. Do one of the following:
 - In a GNSS survey:
 - If the antenna height is null, select the *Stake method*, enter the *Antenna height*, and set the *Measured to* field appropriately and then tap *Start*.
 - If the antenna height was configured in the survey style, or recently entered, you are not prompted to enter the antenna height again.
 To change the antenna height, tap the antenna icon in the status bar and then enter the new value in the screen that appears. Tap *Accept*.
 - In a conventional survey:
 - To change the target height, tap the target icon in the status bar, tap the antenna height field and then enter the new value in the screen that appears. Tap *Accept*.

10. Use the *graphical display* to navigate to the point.
 If required, edit the design elevation.

11. When the point is within tolerance measure the point.
 When the point has been stored, the point is removed from the stake out list and you are returned to the stake out point list.

12. Select the next point and then repeat the process.

GNSS stake methods

In a GNSS survey, configure the stake method to control how stake out navigation information appears.

In the *Stake* field, select one of the following methods for staking out the point:
 - *To the point* - stake out the point with directions from your current position.
• **From fixed point** - stake out the point with cross-track information and directions from another point. Enter a point name in the *From point* field. Select from a list, key in, or measure this value.

• **From start position** - stake out the point with cross-track information and directions from the current position when you start to navigate.

• **From last point staked** - stake out the point with cross-track information and directions from the last point that was staked out and measured. The *staked* point is used, not the design point.

• **Relative to azimuth** - stake out the point with the cross-track information and directions relative to a keyed-in azimuth.

Note –

• The cross-track function creates a line between the point to be staked out and one of the following: a fixed point, the start position, the last point staked, or a reference azimuth. The General Survey software displays this line, and an extra field (Go left or Go right), in the graphical stake out screen gives the offset to the line.

• **When the Deltas field is set to Station and offset the Go left or Go right field shows the same information as the H.Offset field.**

• **When the Deltas is set to Station and offset and the Stake method is set to Relative to azimuth, the Go left or Go right field is replaced by the delta Elev (to last) staked point field.**

If the antenna height was already entered, you can configure the *Stake* methods. From the second row of softkeys in the stake out point list screen, tap *Options*. To see the other softkeys, tap the arrow or press the Shift key.

Editing the design elevation

• The design elevation appears in the bottom right corner of the navigation window. To edit the elevation, tap the arrow. To reload an edited elevation, select *Reload original elevation* from the pop-up menu in the *Design elevation* field.

If the navigation window contains five rows of navigation information, the label for the *Design elevation* field is not shown.

• After staking, you can modify the design elevation in the as-staked deltas screen, depending on the *stake out style sheet* being used.

Offsetting a point

When staking a point using the *Stake* option *To the point* you can stake an offset point defined by an azimuth and offset from the point. You can also define a second offset point on the same azimuth as the first offset point.

1. When navigating to the point, from the second row of softkeys in the graphical display, tap *Offset*.

2. Use the *Offset* option, as shown in the diagram below, to stake out points (1) at an azimuth (2) from a point (3) and offset by a horizontal distance (4).
The elevation for each offset point can be defined by:

- **Slope from point** – the elevation is computed by a slope from the elevation of the point selected to stake.
- **Delta from point** – the elevation is computed by a delta from the elevation of the point selected to stake.
- **Key in** – the elevation is keyed in.

Note – *If the point has no elevation, the elevation for the offset points must be keyed in.*

3. Tap **Accept**.
 The map shows the selected point and the first offset point.

4. Use the **graphical display** to navigate to the offset point.

5. When the point is within tolerance, measure the point.
 When the point has been stored, you are returned to the map. If a second offset point has been defined, the map is updated to show this point.

6. Use the graphical display to navigate to the offset point.
 When the second offset point has been measured and stored, the point is removed from the stakeout list and you are returned to the stakeout point list.

7. Select the next point and then repeat the process.

Staking out lines

To stake out a line in an RTK or conventional survey:

1. Do one of the following:
 - From the main menu, select **Stakeout / Lines** and then tap the pop-up arrow next to the **Line name** field and select:
 - **List** to view a list of previously defined lines to select from.
 - **Two points** to define the line from two points.
 - **Azimuth** to define the line by a start point and an azimuth.
 - From the map:
 - Select two points to define a line, tap and hold on the map and then select **Stake out line** from the menu.
 - Double-tap the line on the map.
1. Select the line to be staked out and then tap Stakeout, or tap and hold on the map and then select Stake out line from the menu.

When selecting a line to stakeout from the map, tap near the end of the line that you want to designate as the start. Arrows are then drawn on the line to indicate the direction. If the direction is incorrect, tap the line to deselect it and then tap it at the correct end to reselect the line in the direction required. Alternatively tap and hold on the map and select Reverse line direction from the menu.

Note – If the line has been offset, the offset directions are not swapped when the line direction is reversed.

2. In the Stake field, select one of the following options:
 - To the line
 - Station on the line
 - Station/offset from line
 - Slope from line
 - Station/skew offset from line

When staking by Station on the line, Station/offset from line or Station/skew offset from line, use the Sta- and Sta+ softkeys to select the station to stake, or tap the pop-up arrow at the Station fields to select the start or end station.

3. To review the line definition, tap Details.

4. Enter the Antenna/Target height, the value of the station to be staked out (if any), and any further details, such as horizontal and vertical offsets. Tap Start.

5. Use the graphical display to navigate to the point.

6. When the point is within tolerance measure the point.

Tips
- When using a GNSS receiver with an in-built tilt sensor, you can:
 - tap eBubble to display an electronic bubble
 - configure the survey style to prompt a warning when the pole is outside a specified Tilt tolerance
- Tap Options to configure the quality control, precision, and tilt settings.

To the line

Use this option, as shown in the diagram below, to measure your position (1) relative to a defined line (2).
Station on the line

Use this option, as shown in the diagram below, to stake out stations (1) on a defined line at the station interval (2) along the line.

Station/offset from line

Use this option, as shown in the diagram below, to stake out a point (1) perpendicular to a station (3) on a defined line (2) and offset to the left or right by a horizontal distance (4). The design elevation of the point is the same as the elevation of the line at the selected station.

Slope from line

Use this option, as shown in the diagram below, to measure your position relative to a slope (2) defined either side of a defined line (1). Each slope can be defined with a different grade (3). Use the *Slope left* field and the *Slope right* field to define the type of grade in one of the following ways:

- horizontal and vertical distance
- grade and slope distance
- grade and horizontal distance

The software reports your position relative to the line and the vertical distance as a cut (4) or a fill (5) to the slope.
Station/skew offset from line

Use this option, as shown in the diagram below, to stake out a point (1) at a skew (2) from a station (3) on a defined line (4) and offset to the left or right by a skew distance (5). The skew can be defined by a forward or backward delta angle to a line (6) at right angles to the line being staked, or the skew can be defined by an azimuth. The diagram shows a point defined by a skew forward and offset to the right.

The elevation for the point can be defined by:
- *Slope from line* – the elevation is computed by a slope from the elevation of the line at the entered station
- *Delta from line* – the elevation is computed by a delta from the elevation of the line at the entered station.
- *Key in* – the elevation is keyed in.

Note – *If the line has no elevation, the elevation for the point must be keyed in.*

Staking out arcs

Follow these steps to stake out an arc in an RTK or conventional survey:

1. Do one of the following:
 - From the main menu, select *Stakeout / Arcs* and then tap the pop-up arrow next to the *Arc name* field and select *List* to view a list of previously defined arcs to select from.
 - From the map, select the arc to be staked out. Tap *Stakeout*, or tap and hold on the map and then select *Stakeout* from the menu.
 When selecting an arc to stakeout, tap near the end of the arc that you want to designate as the start. Arrows are then drawn on the arc to indicate the direction. If the direction of the arc is incorrect, tap the arc to deselect it and then tap it at the correct end to reselect the arc in the direction required. Alternatively tap and hold on the map and select *Reverse arc direction* from the menu.
 Note – *If the arc has been offset, the offset directions are not swapped when the arc direction is reversed.*

2. In the *Stake* field, select one of the following options:
 - *To the arc*
 - *Station on the arc*
 - *Station/offset from arc*
- **Slope from arc**
- **Station/skew offset from arc**
- **Intersect point of arc**
- **Center point of arc**

When staking by **Station on the arc**, **Station/offset from arc**, or **Station/skew offset from arc**, use the **Sta-** and **Sta+** softkeys to select the station to stake, or tap the pop-up arrow at the **Station** fields to select the start or end station.

3. To review the arc definition, tap **Details**.

4. Enter the **Antenna/Target height**, the value of the station to be staked out (if any), and any further details, such as horizontal and vertical offsets. Tap **Start**.

5. Use the graphical display to navigate to the point.

6. When the point is within tolerance measure the point.

Tips
- When using a GNSS receiver with an in-built tilt sensor, you can:
 - tap **eBubble** to display an electronic bubble
 - configure the survey style to prompt a warning when the pole is outside a specified **Tilt tolerance**
- Tap **Options** to configure the quality control, precision, and **tilt settings**.

To the arc

Use this option, as shown in the diagram below, to measure your position (1) relative to a defined arc (2).

![Diagram of To the arc](image)

Station on the arc

Use this option, as shown in the diagram below, to stake out points (1) on a defined arc at the station intervals (2) along the arc.

![Diagram of Station on the arc](image)
Station/offset from arc

Use this option, as shown in the diagram below, to stake out a point (1) perpendicular to a station (3) on a defined arc (2) and offset to the left or right by a horizontal distance (4). The design elevation of the point is the same as the elevation of the arc at the selected station.

![Diagram of Station/offset from arc](image)

Slope from arc

Use this option, as shown in the diagram below, to measure your position relative to a slope (2) defined either side of a defined arc (1). Each slope can be defined with a different grade (3).

Use the **Slope left** field and the **Slope right** field to define the type of grade in one of the following ways:

- horizontal and vertical distance
- grade and slope distance
- grade and horizontal distance

The software reports your position relative to the arc and the vertical distance as a cut (4) or a fill (5) to the slope.

![Diagram of Slope from arc](image)
Station/skew offset from arc

Use this option, as shown in the diagram below, to stake out a point (1) at a skew (2) from a station (3) on a defined arc (4) and offset to the left or right by a skew distance (5). The skew can be defined as a forward or backward delta angle to a line (6) at right angles to the arc being staked, or the skew can be defined by an azimuth. The diagram shows a point defined by a skew forward and offset to the right.

The elevation for the point can be defined by:
- *Slope from arc* – the elevation is computed by a slope from the elevation of the arc at the entered station.
- *Delta from arc* – the elevation is computed by a delta from the elevation of the arc at the entered station.
- *Key in* – the elevation is keyed in.

Note – If the arc has no elevation, the elevation for the point must be keyed in.

Intersect point of arc

Use this option as shown in the diagram below, to stake out the Intersection point (1) of an arc (2).

Center point of arc

Use this option, as shown in the diagram below, to stake out the Center point (1) of a defined arc (2).
Staking out alignments

Use the General Survey software to create, offset, and stake out alignments, which are sometimes known as polylines.

Alignments always have a horizontal component; the vertical component is optional. When editing an alignment, you can edit the horizontal and vertical components separately. However, if you edit the horizontal alignment, you must check if the vertical alignment also needs editing.

Note – To create or edit a road with the option to include templates and superelevation and widening records, use the Roads software. For more information on the Roads software, go to http://apps.trimbleaccess.com/Trimble/Roads.

You can select or create and stake alignments using one of the following methods:

- Key in point name ranges.
- Select one or more polylines in graphical view.
- Selecting an existing alignment from the Stakeout menu
- Select an existing alignment (RXL or LandXML) from the map.
- Select a series of points in the map.
- Select a combination of points, lines, arcs, polylines, or alignments in the map.

Tip - To add files from another folder to the list, tap Add, navigate to the required folder and then select the file(s) to add.

Creating an alignment by keying in a point name range

1. From the main menu, select Stakeout / Alignments.
 You can stake an existing alignment or key in a new alignment. If the Point range field is not visible, tap New to enter a new alignment.
2. Enter the point names that define the alignment.
 The following name range techniques are supported:

<table>
<thead>
<tr>
<th>Enter</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,3,5</td>
<td>Creates a line between points 1 to 3 to 5</td>
</tr>
<tr>
<td>1-10</td>
<td>Creates lines between all points from 1 through 10</td>
</tr>
<tr>
<td>1,3-5-10</td>
<td>Creates a line between points 1 to 3, to 5, and 5 through 10</td>
</tr>
<tr>
<td>1(2)3</td>
<td>Creates an arc between points 1 and 3, through point 2</td>
</tr>
</tbody>
</table>
 | 1(2,L)3 | 2 (Center point), L (left) or R (right)
 Creates a **Left** hand arc between points 1 and 3, with point 2 as the center point |
 | 1(100,L,S)3 | 1 to 3, radius=100, L (left) or R (right), L (large) or S (small)
 Creates a **Left** hand **Small** arc between points 1 and 3 with a radius of 100 |
3. To store the alignment, select the Store alignment check box, enter an Alignment name, enter a String name (if required) and a Start station and Station interval, and then tap Next.
This takes you to stakeout.
Alignments are stored as RXL files. If you save the alignment, you can easily stake it again, view it in the map, and share it with other jobs and with other controllers.

Tip - To offset the alignment, tap *Offset*.

4. You can stake an alignment by the following methods:
 - To the alignment
 - Station on alignment
 - Side slope from alignment
 - Station/skew offset from alignment

Staking a polyline from a DXF, STR or SHP file

1. From the main menu, tap *Map*. In the 2D map, tap the up arrow to access more softkeys and then tap *Layers*. In the 3D map, tap the layers and then select *Layers*.
2. Tap the file name once to make it visible; tap it again to make it selectable.
 - Tap \(\text{Expand} \) to expand the layers within a DXF or STR file and to allow individual selection of layers to be visible and selectable.
3. Tap *Accept* to confirm the selection and return to the map.
4. Tap the polyline you want to stake.
 - Tap the end of the polyline that you want to be the start of the polyline.
5. To stake the polyline/alignment:
 - Tap *Stakeout*, or tap and hold on the map screen, and then select *Stake out alignment*. This allows you to stake the polyline without storing the alignment.
 - Tap and hold on the map screen and then select *Create / Offset alignment*. Complete the fields as required and then tap *Next*. You can then do one or more of the following:
 - stake the polyline
 - store the polyline as an alignment
 - offset and stake the alignment
 - store the offset alignment
 - store the offset alignment and store node points at vertices
 - stake the alignment or offset alignment

 You can stake a polyline directly from a DXF, STR or SHP file, but all polylines are converted to alignments for stakeout and when saved to the controller.

6. You can stake an alignment by the following methods:
 - To the alignment
 - Station on alignment
 - Side slope from alignment
 - Station/skew offset from alignment
Selecting an existing alignment from the Stakeout menu

Note – You can stake a LandXML alignment only by selecting it from the map. See Staking an existing alignment from an RXL or LandXML file selected from the map.

1. From the main menu, select Stakeout / Alignments.
2. Select the alignment to stake and then tap Next.
 To configure the software to return to the Select a file screen when exiting the Stakeout menu instead of to the main General Survey menu, tap Options.
3. You can stake an alignment by the following methods:
 - To the alignment
 - Station on alignment
 - Side slope from alignment
 - Station/skew offset from alignment

Staking an existing alignment from an RXL or LandXML file selected from the map

1. From the main menu, tap Map. In the 2D map, tap the up arrow to access more softkeys and then tap Layers. In the 3D map, tap and then select Layers.
2. Tap the file name once to make it visible, tap it again to make it selectable.
3. Tap Accept to confirm the selection and return to the map.
4. Tap the alignment you want to stake.
 The direction of an alignment is defined when it is created; it cannot be changed.
5. To stake the alignment:
 - Tap Stakeout, or tap and hold on the map screen, and then select Stake out alignment. This takes you directly to Stake out alignment.
 - Tap and hold on the map screen and then select Create / Offset alignment. Complete the fields as required and then tap Next. You can then do one or more of the following:
 - stake the polyline
 - store the polyline as an alignment
 - offset and stake the alignment
 - store the offset alignment
 - store the offset alignment and store node points at vertices
 - stake the alignment or offset alignment
6. You can stake an alignment by the following methods:
 - To the alignment
 - Station on alignment
 - Side slope from alignment
Staking an alignment defined by points selected from the map

1. From the main menu, tap Map.
2. Select the points defining the alignment.
3. To stake the alignment:
 - Tap and hold on the map screen, and then select Stake out alignment. This takes you directly to Stake out alignment.
 - Tap and hold on the map screen and then select Create / Offset alignment. Complete the fields as required and then tap Next. You can then do one or more of the following:
 - stake the polyline
 - store the polyline as an alignment
 - offset and stake the alignment
 - store the offset alignment
 - store the offset alignment and store node points at vertices
 - stake the alignment or offset alignment
4. You can stake an alignment by the following methods:
 - To the alignment
 - Station on alignment
 - Side slope from alignment
 - Station/skew offset from alignment

Note – You can stake a LandXML alignment only by selecting it from the map. See Staking an existing alignment from an RXL or LandXML file selected from the map.

Offsetting alignments

When creating an offset alignment, you can stake the alignment without saving it, or you can give the alignment a name and then save the offset alignment as an RXL file. You can also create and save node points at the vertices of the horizontal alignment.

1. To offset an alignment, tap Offset.
2. Enter the offset distance. To offset to the left, enter a negative value.
3. To store the offset alignment, enable the Store alignment check box, enter an Alignment name, enter a String name, if required, and then tap Next. The alignment is stored as an RXL file.
4. To store node points at the vertices of the offset alignment, enable the Store points at nodes check box, enter a Start point name, enter a Code, if required, and then tap Next. Selecting Next stores the alignment, if the Store alignment check box is enabled, and takes you to stakeout. To store an alignment without going to stakeout, tap Store.
5. You can stake an alignment by the following methods:
 - To the alignment
 - Station on alignment
 - Side slope from alignment
 - Station/skew offset from alignment

An offset alignment will have a vertical component if the vertical geometry of the original alignment is coincident with the horizontal geometry and the vertical geometry consists only of points. The offset vertical geometry cannot include curves. If the vertical geometry of an alignment cannot be offset, only the horizontal component will exist in the offset alignment. You cannot offset an alignment that includes transitions.

Staking out relative to a DTM

You can stake an alignment relative to a DTM. When you do this the horizontal navigation is relative to the alignment but the cut/fill delta value shown is to a selected DTM.

1. From the main menu, select *Stakeout / Alignments* and then select the alignment to stake.
2. Tap *Options* and in the Display group select the DTM and then set the *Display cut/fill* field to *DTM*. If required, specify a vertical offset to the DTM. Tap and select whether the offset is to be applied vertical or perpendicular to the DTM.

Note —

- The heading for the displayed cut/fill value changes to V.dist DTM.
- When a horizontal construction offset is applied, the cut/fill value reported is to the DTM at the position selected for stakeout and not to the DTM at your current position.

Station abbreviations

The General Survey software uses the following abbreviations in the *Station* field pop-up menu.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>Curve to transition</td>
<td>SS</td>
<td>Transition to transition</td>
</tr>
<tr>
<td>PC</td>
<td>Point of curvature (Tangent to curve)</td>
<td>ST</td>
<td>Transition to tangent</td>
</tr>
<tr>
<td>PI</td>
<td>Point of intersection</td>
<td>TS</td>
<td>Tangent to transition</td>
</tr>
<tr>
<td>PT</td>
<td>Point of tangent (Curve to tangent)</td>
<td>VCE</td>
<td>Vertical curve end</td>
</tr>
<tr>
<td>AS</td>
<td>Alignment start</td>
<td>VCS</td>
<td>Vertical curve start</td>
</tr>
<tr>
<td>AE</td>
<td>Alignment end</td>
<td>VPI</td>
<td>Vertical point of intersection</td>
</tr>
<tr>
<td>SC</td>
<td>Transition to curve</td>
<td>XS</td>
<td>Regular sections</td>
</tr>
<tr>
<td>Hi</td>
<td>Vertical curve high point</td>
<td>Lo</td>
<td>Vertical curve low point</td>
</tr>
</tbody>
</table>
Staking out to the alignment

1. In the Stake field, select To the alignment.
2. If required, enter a value in the Construction offset field.
3. To change target or antenna heights, tap the target icon in the status bar.
4. Tap Stakeout and then use either the plan or cross section graphical display to navigate relative to the alignment.
 A dashed green line is drawn at a right angle from your current position to the alignment.
 The graphical display shows the:
 - Elevation of your current position (shown in blue)
 - Design elevation of the computed position
 - Construction offset value
 The base of the screen displays the navigation deltas.

 Tips
 - To select the delta display, tap the arrow to the left of the navigation deltas.
 - Tap Options for further delta display options.
 - To view the cross section of your current position, tap the icon at the bottom right of the graphics window. Alternatively, press the [Tab] key on the controller to switch between the plan view and the cross section view.
 - To access the status bar while the graphics window is in widescreen mode, tap the arrow on the far right of the screen. The status bar appears for approximately three seconds, after which time the window returns to widescreen.
 - To change the widescreen mode tap and hold in the graphics window and then select Widescreen.
5. Measure the position.

 Tips
 - When using a GNSS receiver with an in-built tilt sensor, you can:
 - tap eBubble to display an electronic bubble
 - configure the survey style to prompt a warning when the pole is outside a specified Tilt tolerance
 - Tap Options to configure the quality control, precision, and tilt settings.
Staking out a station on an alignment

1. In the Stake field, select Station on alignment.
2. Select a Station to stake and then specify the Station interval.
 You can select a station using one of the following methods:
 - Select from the list in the Station field pop-up menu.
 - Key in a value.
 - Tap Sta+ or Sta- to select the next/previous station.
3. If required, enter an Offset.
4. To edit the design elevation, tap the arrow. To reload an edited elevation, select Reload original elevation from the pop-up menu in the Design elevation field.
 Note – If the position that you select for stakeout has no elevation, the Design elevation field becomes available. Enter an elevation into this field.
5. If required, enter values in the Construction offsets fields.
6. To change target or antenna heights, tap the target icon in the status bar.
7. Tap Stakeout and then use either the plan or cross section graphical display to navigate to the point.
 The graphical display shows the:
 - Station value
 - Offset
 - Elevation of your current position (shown in blue)
 - Design elevation of the selected position (shown in red if edited)
 - Construction offset values

The base of the screen displays the navigation deltas.

Tips
- To select the delta display, tap the arrow to the left of the navigation deltas.
- Tap Options for further delta display options.
- To view the cross section of your current position, tap the icon at the bottom right of the graphics window. Alternatively, press the [Tab] key on the controller to switch between the plan view and the cross section view.
- To access the status bar while the graphics window is in widescreen mode, tap the arrow on the far right of the screen. The status bar appears for approximately three seconds, after which time the window returns to widescreen.
- To change the widescreen mode tap and hold in the graphics window and then select Widescreen.
8. When the point is within tolerance measure the point.
Tips
- When using a GNSS receiver with an in-built tilt sensor, you can:
 - tap eBubble to display an electronic bubble
 - configure the survey style to prompt a warning when the pole is outside a specified Tilt tolerance
- Tap Options to configure the quality control, precision, and tilt settings.

Staking out the side slope from an alignment

1. In the Stake field, select Side slope from alignment.
2. Enter a value in the String name field (this step is optional).
 Tip - The annotation entered in the String name field is assigned to the end of the side slope and is displayed during stakeout.
3. Select a Station to stake and then specify the Station interval.
 You can select a station using one of the following methods:
 - Select from the list in the Station field pop-up menu.
 - Key in a value.
 - Tap Sta+ or Sta- to select the next/previous station.
4. To define the hinge, select a Hinge derivation method and then complete the appropriate fields.
 Note – If the alignment consists of only a horizontal alignment, the only hinge derivation method available is Offset and elevation.
5. To define the Side slope, enter appropriate values in the Cut slope, Fill slope, and Cut ditch width fields.
 Note – Cut and fill slopes are expressed as positive values.
 Tip - To define a side slope with only a cut or fill slope, leave the other slope value field as '?'.
6. If required, enter values in the Construction offsets fields.
7. To change target or antenna heights, tap the target icon in the status bar.
8. Tap Stakeout and then use either the plan or cross section graphical display to navigate to the point.
 The graphical display shows the:
 - Station value
 - Offset
 - Side slope value defined by your current position (shown in blue)
 - Design side slope value
 - Elevation of your current position (shown in blue)
 - Construction offset values
 The base of the screen displays the navigation deltas.
When you are within 3m of the target the graphical display in the plan view shows your current position along with the target. Also displayed is a dashed line that connects the side slope catch position, (the point where the side slope intersects with the ground), to the side slope hinge position.

Tips
- To select the delta display, tap the arrow to the left of the navigation deltas.
- Tap Options for further delta display options.
- To view the cross section of your current position, tap the icon at the bottom right of the graphics window. Alternatively, press the [Tab] key on the controller to switch between the plan view and the cross section view.
- To access the status bar while the graphics window is in widescreen mode, tap the arrow on the far right of the screen. The status bar appears for approximately three seconds, after which time the window returns to widescreen.
- To change the widescreen mode tap and hold in the graphics window and then select Widescreen.
- When you are within 3m of the target the graphical display in the plan view shows your current position along with the target. Also displayed is a dashed line that connects the side slope catch position, (the point where the side slope intersects with the ground), to the side slope hinge position.

9. When the point is within tolerance measure the point.

Tips
- When using a GNSS receiver with an in-built tilt sensor, you can:
 - tap eBubble to display an electronic bubble
 - configure the survey style to prompt a warning when the pole is outside a specified Tilt tolerance
- Tap Options to configure the quality control, precision, and tilt settings.

Note –
- If you are staking to a catch point with construction offsets, navigate to the catch point and then tap Apply to add the construction offsets. You are prompted to apply the offsets from your current position. If you are not on the catch position, select No, navigate to the catch position and then tap Apply again.
 If you want to store the catch position and the construction offset, see Specifying construction offsets.
- To also stake the appropriate hinge position, tap Select>> and select either the Hinge point (Cut) or Hinge point (Fill) option.
Staking out a station at a skew offset from an alignment

1. In the Stake field, select Station/skew offset from alignment.
2. Select a Station to stake and then specify the Station interval.
 You can select a station using one of the following methods:
 - Select from the list in the Station field pop-up menu.
 - Key in a value.
 - Tap Sta+ or Sta- to select the next/previous station.
3. Enter skew and offset values.
 As shown in the diagram below, the point to stake (1) is defined from the station (3) by an offset (5) along the skew (2). The skew can be defined by a forward or backward delta angle to a line (6) at right angles to the alignment being staked (4), or the skew can be defined by an azimuth. The diagram shows a point defined by skew forward and offset to the right.

4. The elevation for the point can be defined by:
 - Slope from alignment – the elevation is computed by a slope from the elevation of the alignment at the entered station.
 - Delta from alignment – the elevation is computed by a delta from the elevation of the alignment at the entered station.
 - Key in – the elevation is keyed in.
 Note – If the alignment has only a horizontal alignment, the elevation for the point can be defined only by Key in.
5. If required, enter values in the Construction offsets fields.
 Note – If the computed position is before the start or beyond the end of the alignment the point cannot be staked.
6. To change target or antenna heights, tap the target icon in the status bar.
7. Tap Stakeout and navigate to the point.
 The graphical display shows the:
 - Station value
 - Skew offset and delta angle/azimuth
 - Elevation of your current position (shown in blue)
- Design elevation of the selected position
- Construction offset values

The base of the screen displays the navigation deltas.

Tips

- To select the delta display, tap the arrow to the left of the navigation deltas.
- Tap *Options* for further delta display options.
- When staking a station at a skew offset, the cross section view is unavailable.
- To access the status bar while the graphics window is in widescreen mode, tap the arrow on the far right of the screen. The status bar appears for approximately three seconds, after which time the window returns to widescreen.
- To change the widescreen mode tap and hold in the graphics window and then select *Widescreen*.

8. When the point is within tolerance measure the point.

Tips

- When using a GNSS receiver with an in-built tilt sensor, you can:
 - tap *eBubble* to display an electronic bubble
 - configure the survey style to prompt a warning when the pole is outside a specified *Tilt tolerance*
 - Tap *Options* to configure the quality control, precision, and *tilt settings*.

Hinge derivation methods

The following diagram explains the three hinge derivation methods:

Key to the above diagram:
1 - Offset and elevation. Enter an offset (4) from the horizontal alignment, and the elevation (5) of the hinge position.

2 - Offset and slope. Enter an offset (6) from the horizontal alignment, and the slope value (7) from the intersection of the horizontal and vertical alignments to the hinge position.

3 - Offset and vertical distance. Enter an offset (8) from the horizontal alignment, and the vertical difference (9) from the intersection of the horizontal and vertical alignments to the hinge position.

Cross section view

The cross section that appears is orientated in the direction of increasing station. Your current position and the target are shown. If the target has construction offsets specified, the smaller single circle indicates the selected position and the double circle indicates the selected position adjusted for the specified construction offset(s). The construction offset(s) appear as green lines.

Specifying construction offsets

A point to be staked can be offset by a:

- Horizontal offset
- Vertical offset

A construction offset is indicated in the graphical display by a green line, with the double circle indicating the selected position adjusted for the specified construction offset(s).

Tips

- Construction offsets are job-specific. That is, a construction offset specified for an alignment is not used for the same alignment when it is accessed from a different job.
- Construction offsets are not alignment-specific. That is, a construction offset specified for an alignment is used for all alignments in the same job.
- Construction offsets are not survey session-specific. That is, a construction offset specified for an alignment is used for subsequent survey sessions.

Horizontal construction offsets

When staking a station on the alignment or a station at a skew offset from the alignment you can apply a horizontal construction to a point where:

- A negative value offsets the point to the left of the alignment.
- A positive value offsets the point to the right of the alignment.

When staking a station offset from the alignment, or a side slope, you can apply a horizontal construction to a point where:

- A negative value offsets the point toward the alignment (in).
- A positive value offsets the point away from the alignment (out).
When staking a catch point, use the advanced pop-up arrow to specify if the offset is to be applied:

- Horizontal
- At the slope of the previous element in the cross section

The following diagram shows a Horizontal offset (1) and Slope previous offset (2) applied to the catch point (3). For the Slope previous option, the slope of the offset is defined by the slope of the side slope (4). The Vertical offset value in the diagram is 0.000.

Note —

- For points with zero offset, you cannot apply construction horizontal offsets at the slope value of the previous template element.
- When staking a station at a skew offset from the alignment, the horizontal construction offset is applied along the skew, not at right angles to the alignment.
- Construction offsets are not automatically applied to a side slope offset. For more information, see staking a Catch point.
- When you stake a side slope, select the Store both catch and construction offset check box if you want to measure and store the catch position.

Vertical construction offsets

You can apply a vertical construction offset to a point where a:

- Negative value offsets the point vertically down.
- Positive value offsets the point vertically up.

When staking a side slope from the alignment, in the Vertical offset field, use the advanced pop-up arrow to specify if the offset is to be applied:

- Vertically
- Perpendicular to the element in the cross section before the point being staked
The following diagram shows a **Vertical offset** applied vertically (1) and a **Vertical offset** applied perpendicular (2) to the side slope (3).

Specifying a side slope

A side slope is defined by a **Cut slope** (1), **Fill slope** (2), and **Cut ditch width** (3) fields. The following diagram shows the side slope.

Catch point

The catch point is the point where the design side slope intersects with the ground. The actual intersection position of the side slope with the existing ground surface - the catch point - is determined iteratively (by repetition). The General Survey software calculates the intersection of a horizontal plane passing through the current position, and either the cut or fill side slope, as shown in the following diagram, where \(x_n \) is the *Go Right/Left* value.
The graphical display in the plan view, shows the calculated catch position. The calculated slope value (in blue) and the design slope value appears at the top of the screen.

To view the cross section of your current position, tap the icon at the bottom right of the graphics window. Alternatively, press the [Tab] key on the controller to switch between the plan view and the cross section view.

The cross section is displayed looking in the direction of increasing station. Your current position and the calculated target are indicated. A line is drawn (in blue) from the hinge position to your current position to indicate the calculated slope.

If the catch point has construction offsets specified, these appear in the cross-section view as green lines. The smaller single circle indicates the calculated catch position and the double circle indicates the selected position adjusted for the specified construction offset(s). The construction offsets appear only after you have applied them.

From the Confirm staked deltas screen (or Review job) tap Report to view the Catch point deltas report screen.

The Select softkey

The Select softkey provides the following options related to staking a side slope.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catch point (Auto)</td>
<td>The General Survey software selects the side slope (cut or fill) to intersect with the ground. This is the default.</td>
</tr>
<tr>
<td>Catch point (Cut)</td>
<td>Fixes the side slope as a cut side slope.</td>
</tr>
<tr>
<td>Catch point (Fill)</td>
<td>Fixes the side slope as a fill side slope.</td>
</tr>
<tr>
<td>Hinge point (Cut)</td>
<td>Stakes out the base of the cut side slope. This is the most direct way to select the hinge point if the template includes a ditch offset.</td>
</tr>
<tr>
<td>Hinge point (Fill)</td>
<td>Stakes out the start of the fill side slope.</td>
</tr>
</tbody>
</table>

Catch point staked deltas

If you have the View before storage check box in the Stakeout options selected, the Confirm staked deltas screen appears before you store the point.

The General Survey software supports user-definable stakeout reports, which enable you to configure the display of staked information on the Confirm staked deltas screen that appears when you enable View before storage. For more information, see As-staked point details.

Note – The value in the S.Dist to hinge + Constr off field includes any construction offset values specified and reports the slope distance from the hinge to the as-staked position. The value is null (?) if there is no horizontal construction offset specified or the horizontal construction offset is applied horizontally.

Tip - Tap Report to view the Catch point deltas report screen. This screen shows the horizontal and vertical distances from the hinge and the centerline. If the side slope includes a cut ditch, the report
includes the hinge position at the toe of the cut slope. The reported values exclude any construction offset specified. The following diagram explains some of these fields.

Where:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Distance to center line</td>
</tr>
<tr>
<td>B</td>
<td>Horizontal distance to hinge point</td>
</tr>
<tr>
<td>C</td>
<td>Vertical distance to hinge point</td>
</tr>
<tr>
<td>D</td>
<td>Slope</td>
</tr>
<tr>
<td>E</td>
<td>Slope distance to hinge point</td>
</tr>
<tr>
<td>F</td>
<td>Horizontal construction offset</td>
</tr>
<tr>
<td>G</td>
<td>Ditch offset</td>
</tr>
<tr>
<td>H</td>
<td>Hinge point</td>
</tr>
<tr>
<td>J</td>
<td>Catch point</td>
</tr>
</tbody>
</table>

Digital terrain models (DTMs)

A DTM is an electronic representation of a 3D surface. The General Survey software supports gridded (.dtm), triangulated (.ttm) DTMs, and triangulated DTMs in a LandXML file. **Note – DTM in a LandXML file are only supported in the Map, not in stakeout.**

When a DTM is enabled in the Map, a color gradient shows the elevation changes. To disable the color gradient and show only an outline of the DTM, go to Options and then clear the Display color gradient check box.

When you specify a DTM, you can view the cut and fill relative to the DTM. You must define a projection and datum transformation before you use a DTM in a GNSS or conventional survey. When you specify an offset to raise or lower the DTM, you can select whether the offset is to be applied vertical or perpendicular to the DTM. **Note – When the offset is applied perpendicular to the DTM, the cut/fill value is computed using the following steps:**
1. Determine the triangle that the current position lies on (1).
2. Offset that triangle at a right angle by the specified offset value (2) to define a new triangle.
3. Compute the elevation of the same position on the new triangle (3).
4. Compute the cut/fill value from the computed elevation to the staked position (4).

Staking out a DTM

1. Transfer a DTM file into the General Survey software then select Stakeout / DTM.
2. Select the file to be used.

 Note – All DTM files from all folders are listed.
3. If necessary, specify an offset to raise or lower the DTM. Tap and select whether the offset is
to be applied vertical or perpendicular to the DTM.
4. To change target or antenna heights, tap the target icon in the status bar.

 If the target or antenna height have not been defined, the elevation and cut/fill will be null (?).
5. Tap Start. The stakeout graphical display screen appears, displaying the coordinates of the
current position and the distance above (cut) or below (fill) the DTM.

 Note – Unless you are using a conventional instrument that supports tracking, the values
appear only after you have taken a distance measurement.
6. When the point is within tolerance, measure the point.

Tips

- When using a GNSS receiver with an in-built tilt sensor, you can:
 - tap eBubble to display an electronic bubble
 - configure the survey style to prompt a warning when the pole is outside a specified
 Tilt tolerance
- Tap Options to configure the quality control, precision, and tilt settings.

When staking out the DTM, if you are outside the extent of the DTM or in a "hole", the DTM
elevation and cut/fill will be null (?).
Showing the cut/fill to a DTM

Showing the cut/fill to a DTM when staking out a point, line, arc, alignment, or road

1. Tap Options in the Stakeout screen.
2. Specify the model.
3. Select the element to display the cut/fill to.
 Tip – To check layer thickness when constructing a road, define a DTM for the previous layer and then when staking out the current layer select Design + DTM in the Display cut/fill to field.
4. Tap and select whether the offset is to be applied vertical or perpendicular to the DTM.
 Note – This does not apply to the Slope from line or Slope from arc stake methods.

Showing the cut/fill to a DTM in the map

1. Transfer a DTM file to the appropriate project folder on the controller.
2. From the main menu, tap Map. In the 2D map, tap the up arrow to access more softkeys and then tap Layers. In the 3D map, tap and then select Layers.
3. Tap the DTM file once to select the file and view it in the map; tap the DTM file name again to make it active. Tap Accept to return to the map. When the DTM is active and the map has a position on the DTM, the DTM elevation, and the distance above (cut) or below (fill) the DTM appear in the map screen.
 Tip - For the Trimble tablet the elevation of your current position is also displayed in the map screen.
4. If necessary, specify an offset to raise or lower the DTM. Tap and select whether the offset is to be applied vertical or perpendicular to the DTM. The offset can be configured in Options when you select the DTM file. When defined, the offset also appears in the Map.
5. To change target or antenna heights, tap the target icon in the status bar.
 If the target or antenna height have not been defined, the elevation and cut/fill will be null (?)

Staking to an elevation

To measure your position relative to an elevation in an RTK or conventional survey:

1. From the main General Survey menu, select Stakeout / Elevation.
2. Enter the Design elevation.
3. Enter a value in the Antenna/Target height field and make sure that the Measured to field is set correctly.
4. Tap Start. The stakeout graphical display screen appears, displaying the coordinates of the current position and the distance above (cut) or below (fill) the design elevation.
Note – *Unless you are using a conventional instrument that supports tracking, the values appear only after you have taken a distance measurement.*

5. Measure the position.

Tips
- When using a GNSS receiver with an in-built tilt sensor, you can:
 - tap *eBubble* to display an electronic bubble
 - configure the survey style to prompt a warning when the pole is outside a specified *Tilt tolerance*
- Tap *Options* to configure the quality control, precision, and *tilt settings*.
Survey Settings

Settings menu

Use Settings from the Trimble Access menu to configure common configuration settings that are shared among multiple programs.

The following programs use common configuration settings that are available from Settings:
- Trimble Access General Survey
- Trimble Access Roads
- Trimble Access Tunnels
- Trimble Access Mines

Use the Survey styles menu to:
- Create and edit survey styles

Use the Templates menu to:
- Create, edit, rename, or delete a template.
- Import a template from another job.

Use the Connect menu to:
- Configure the Internet setup
- Create GNSS contacts for use with cellular modems
- Configure Auto connect options
- Configure Trimble servo total station Radio settings
- Configure Bluetooth connections
- Configure the Wi-Fi image transfer settings. Only available if you are using a controller with Wi-Fi image transfer software installed.
- Calibrate the controller’s internal compass, if available
- Configure Auxiliary GPS options

Use the Feature library menu to:
- Create and edit feature libraries

Use the Language menu to:
- Change the language.
- Switch on or off sound events.
Switch on or off the Trimble keyboard (supported third-party Windows computers only).

Survey styles

Survey styles define the parameters for configuring and communicating with your instruments, and for measuring and storing points. In a GNSS survey, the survey style instructs the base and rover receivers to perform the functions required for a specific survey type. This whole set of information is stored as a template that can be called up and re-used when necessary.

You can use the styles supplied with the system without configuring them, but you can change default settings as required.

Note – The 5600 3600 style works with both the Trimble 5600 and Trimble 3600 instruments. General Survey detects the instrument that you are connected to and automatically configures the appropriate controls.

In a new system, a number of Survey styles are created automatically, and their display properties are controlled through options that are not initially enabled. Options are automatically enabled when the controller software auto-connects to the instrument. To control the options manually, tap Settings / Survey styles from the Trimble Access menu and then tap the Options softkey.

You can set the software options and the auto-connect options independently of each other. For example, if you clear the Trimble GNSS receiver check box in the Auto connect options dialog, that does not disable the GNSS surveying option in the software Options dialog. However, if the auto-connect options are disabled, then the software options cannot be automatically enabled, because it is the auto-connect process that detects the instrument and then configures the appropriate software options.

Configure the style if the defaults do not suit your needs. To modify the survey style, tap Settings from the Trimble Access menu and then select Survey styles.

Locking a survey style

You can lock Survey Styles to prevent them from being edited in the field. To do this:

1. Use Windows Mobile Device Center to establish a connection between the controller and your office computer.
3. Copy the required style file to your office computer.
4. Select the file, right-click it and then select [Properties].
5. From the [Properties / General] tab, select the [Read-only] check box.
6. Tap OK.
7. Copy the file back to the [Systems Files] folder on your controller.

Select Settings / Survey Styles and note the lock symbol to the left of the style name indicating that you cannot edit this style.

Note – A locked style will be updated to reflect any changes made during the auto-connect cycle when connecting to an instrument.

Tip - You can edit a copied survey style.
Survey types

Your survey type will depend on available equipment, field conditions, and the results required. Configure the survey type when you create or edit a survey style.

To do this:
1. From the Trimble Access menu, tap Settings / Survey styles / <Style name> / Base options.
2. Change the Type field as required.
3. Do the same for Rover options.

Note – General Survey uses the settings from the selected survey style when you start the survey. General Survey will check the style settings to ensure that they are appropriately configured for the equipment that you are connected to. For example, if GLONASS is enabled in the survey style it will check if the GNSS receiver or antenna you are connected to also supports GLONASS. If General Survey detects an incorrect setting, or if it detects that the settings in the survey style have never been checked, it will ask the user to confirm or correct the settings. Any changed settings are saved to the survey style.

For more information, see:
- Integrated surveys
- Configuring conventional survey styles
- Configuring GNSS survey styles

Configuring the survey style to use a laser rangefinder

To measure points or distances using a laser rangefinder connected to the controller, first configure the laser rangefinder in your survey style.

1. From the Trimble Access menu, tap Settings / Survey styles.
2. Highlight a survey style and tap Edit.
4. Select one of the instruments in the Type field.
5. If necessary, configure the Controller port and Baud rate fields.
 - The default value in the Baud rate field is the manufacturer’s recommended setting. If the laser is a model with which the General Survey software can automatically take a measurement when you tap Measure, edit the Auto measure field.
6. If required, select the Auto store point check box.
7. Tap Enter. The precision fields contain the manufacturer’s precision values for the laser. They are for information only.

Trimble controllers support Bluetooth wireless connection to some laser rangefinders. If you use a Bluetooth wireless connection to a laser rangefinder, configure the Bluetooth wireless connection settings. For more information, see Bluetooth.

Laser measurements can be displayed as vertical angles measured from the zenith or inclinations measured from horizontal. Select a display option in the Laser VA display field of the Units screen. For more information, see Units.

If you are using the LTI TruPulse 200B or 360B, you can select the Low quality targets check box. When the check box is not selected, measurements that are flagged by the laser rangefinder as low quality are rejected and you will need to take another measurement.

Before using the laser with the controller, configure the laser options. The following table shows the configuration for each laser that is supported by General Survey.

<table>
<thead>
<tr>
<th>Laser</th>
<th>Laser setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trimble Geo7X</td>
<td>Note - When calibrating the sensors, make sure you perform the calibration away from all sources of magnetic interference.</td>
</tr>
<tr>
<td>integrated rangefinder</td>
<td>The integrated rangefinder is selected by default in the survey style. Enter the laser height in the Laser height field in the General Survey software. In the laser rangefinder application, select the Position / Offset method when measuring laser points.</td>
</tr>
<tr>
<td>Bosch DLE 150</td>
<td>When the Bosch DLE 150 is detected, an authentication request dialog appears. You must enter the PIN number set in the laser rangefinder.</td>
</tr>
<tr>
<td>LTI Criterion 300</td>
<td>From the main menu, press the down arrow or up arrow key until the Survey menu appears and then tap Enter. Select Basic measurements and tap Enter. A screen showing the fields HD and AZ appears.</td>
</tr>
<tr>
<td>or LTI Criterion 400</td>
<td></td>
</tr>
<tr>
<td>LTI Impulse</td>
<td>Set up the laser to operate in CR 400D format. Make sure that a small "d" is displayed on the screen. (If necessary, press the Fire2 button on the laser).</td>
</tr>
<tr>
<td>LTI TruPulse 200B/360B</td>
<td>Set the TruPulse mode to either [Slope Distance], [Vertical Distance], or [Horizontal Distance].</td>
</tr>
<tr>
<td>Laser Atlanta Advantage</td>
<td>Set the Range/Mode option to Standard (Averaged) and the Serial/Format option to Trimble Pro XL. Set Serial / Remote / Trigger Character to 7 (37h). (The remote trigger works only when connected via a cable, not when using Bluetooth wireless technology.) Set Fire Time to the delay required (not zero or infinity). Set Serial T-Mode to Off.</td>
</tr>
<tr>
<td>Laser</td>
<td>Laser setting</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>LaserCraft Contour XLR</td>
<td>Set the LaserCraft mode in the laser. If you connect through Bluetooth wireless technology, you also need to change the baud rate setting on the laser rangefinder to 4800.</td>
</tr>
<tr>
<td>Leica Disto memo/pro</td>
<td>Set the unit to meters or feet, not feet and inches.</td>
</tr>
</tbody>
</table>
| Leica Disto Plus | You must enable Bluetooth wireless technology on the Leica Disto Plus before you run a Bluetooth scan. To do this, set System / Power / Bluetooth to On. If automeasure is switched off:
1. To take the measurement, press the [Dist] key on the laser rangefinder.
3. To transfer the measurement to the controller, press one of the eight direction arrow keys. |
| MDL Generation II | No special settings are required. |
| MDL LaserAce | Set the Data record format to Mode 1. When you use the angle encoder, set the magnetic declination to zero in the General Survey software. The angle encoder in the LaserAce laser corrects for the magnetic declination.
Set the baud rate to 4800.
Bluetooth model connection details:
There is no Bluetooth wireless technology configuration on the MDL LaserAce, it is always enabled.
When the MDL LaserAce is detected during the scan for Bluetooth devices, an authentication request dialog appears. You must enter the PIN number set in the laser rangefinder (default PIN = 1234). |

Note – You must configure the laser rangefinder to update the inclinometer and slope distance readings after each measurement.
For more information, see:
[Measuring points with a laser rangefinder](#)
Echo sounder instruments

General Survey software supports as standard the following models of bathymetric echo sounders:

<table>
<thead>
<tr>
<th>Echo sounder</th>
<th>Echo sounder settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>CeeStar Basic High Freq</td>
<td>CeeStar Dual Frequency echosounders, BASIC output format, when the High Frequency depth is to be stored. The unit must be set to output 'prefixes' and not 'commas' in the output data [Menu / Advanced / Prefix / Comma outfm] set to [Use prefix].</td>
</tr>
<tr>
<td>CeeStar Basic Low Freq</td>
<td>CeeStar Dual Frequency echosounders, BASIC output format, when the Low Frequency depth is to be stored. The unit must be set to output 'prefixes' and not 'commas' in the output data [Menu / Advanced / Prefix / Comma outfm] set to [Use prefix].</td>
</tr>
<tr>
<td>NMEA SDDBT device</td>
<td>Any generic Echosounder device that can output the NMEA DBT (Depth Below Transducer) sentence. The "talker ID" must send the standard "SD" identifier (so that output lines all begin with "$SDDBT,"...). General Survey will accept the data in Feet, Meters, or Fathoms and will convert values as appropriate.</td>
</tr>
<tr>
<td>SonarMite</td>
<td>Any SonarMITE device. the unit will be switched into 'Engineering mode' (output format 0) and other settings may be adjusted by General Survey.</td>
</tr>
</tbody>
</table>

Trimble has some ESD files for other devices. To see if a definition already exists for your device, go to www.trimble.com/Survey/Trimble-Access-IS.aspx and click Downloads and then click Echo Sounder Protocol Description Files.

An ESD file for each echo sounder supported as standard is provided in the "System Files" folder. If you need to make changes to an ESD file, copy the file to a PC and rename it. Open the file in a text editor such as Notepad++. When you have finished editing the file, save your changes and then copy the file into the "System Files" folder on the controller. The name of the ESD file appears in the Type field in the Echo Sounder screen.

Note – When using an echo sounder to record depths that equal zero, you need to add the allowZero="True" flag immediately after the isDepth="True" flag. For example: "<Field name... isDepth="True" allowZero="True"/>

For more information, see Using an Echo sounder to store depths.

Adding support for a different model of echo sounder

General Survey software uses XML Echosounder protocol description (*.esd) files and so may support other bathymetric echo sounders provided that their communications protocols are similar to the protocols currently supported. To do this, use one of the ESD files provided with General Survey and use it as a template. You will need to find out the format for your echo sounder and modify the ESD file accordingly.

If the format for your echo sounder is:

- delimited (such as comma or space delimited), use the SonarMite ESD file as a template.
- fixed width, use one of the CeeStar ESD files as a template.
• a NMEA string such as NMEA $SDDBS, use the NMEA $SDDBT ESD file as a template.

The format of the SonarMite ESD file is provided below:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<ExternalDeviceProtocol version="1.0">
  <Device name="SonarMite in Engineering Mode">
    <MaxLatency>0.5</MaxLatency>
    <Protocol type="Delimited" delimiter="20" startsWith="1" special="SonarMite" requiredFieldCount="8">
      <Field name="Depth" fieldNumber="1" type="Number" multiplier="1.0" isDepth="True"/>
      <Field name="Battery Voltage" fieldNumber="5" type="Number" multiplier="1.0"/>
      <Field name="Quality" fieldNumber="6" type="Integer"/>
      <Field name="Flags" fieldNumber="7" type="Integer" sonarMiteFlags="True"/>
    </Protocol>
  </Device>
</ExternalDeviceProtocol>
```

The formats of the other ESD files are similar. Use the information below to edit the ESD file you are using as a template.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Applicable format</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Latency</td>
<td>All</td>
<td>MaxLatency specifies the width of the acceptable window of time that a reading can be accepted. The Maximum Latency assumes the GPS position bisects the acceptable window, therefore the echo sounder reading must be +/- MaxLatency/2 of the stored GPS position. In the example above, the MaxLatency is 0.5 and so the echo sounder reading must occur within 0.25 seconds before or after the stored GPS position. Typically, the MaxLatency is set to the period of the echo sounder measurements, but can be reduced if you prefer to reject some measurements if they arrive outside a narrower window.</td>
</tr>
<tr>
<td>Protocol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>type="Delimited" or "FixedWidth"</td>
<td>All</td>
<td>Specifies if the ESD data is output as a data string separated by an ASCII character such as a space or a comma (delimited), or if each field has a fixed number of characters (fixed width).</td>
</tr>
<tr>
<td>delimiter="2C"</td>
<td>delimited</td>
<td>Specifies the delimiter as two hex digits which specify the ASCII delimiter character (field separator). For example, space="20", comma="2C", tab="09".</td>
</tr>
<tr>
<td>lineLength=""</td>
<td>fixed width</td>
<td>Specifies the line length as a decimal number indicating the minimum length of a valid line. For example, lineLength="34".</td>
</tr>
<tr>
<td>startsWith=""</td>
<td>All</td>
<td>These are optional strings to help identify valid lines of</td>
</tr>
<tr>
<td>Parameter</td>
<td>Applicable format</td>
<td>Notes</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>startsWith2=""</td>
<td></td>
<td>These can be used to specify the text that identifies the start of a line. These strings can be left blank. For these strings, any leading, trailing, and double spaces are trimmed by XML. Use underscore ("_") as a substitute for space characters. For example, startsWith="_A".</td>
</tr>
<tr>
<td>ignoreLines=""</td>
<td></td>
<td>These strings specify that special treatment should apply. If you specify "SonarMite", Trimble Access will send SonarMite protocol commands to the device to configure its protocol. If you specify NMEA, Trimble Access will validate the checksum on each line. If you are using the SonarMite ESD file as a template for another type of ESD, you should delete this string. You will also need to delete any sonarMiteFlags="True" strings from any fields specified type="Integer".</td>
</tr>
<tr>
<td>special="SonarMite" or "NMEA"</td>
<td>delimited, NMEA</td>
<td>Specifies the number of fields in a line of delimited data. For example, a typical line of SonarMite ESD data contains 8 fields: 1 0.96 0 0 0 0 9.3 79 0</td>
</tr>
</tbody>
</table>

Fields

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Applicable format</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>name=""</td>
<td>All</td>
<td>Specifies a name for the data in that field. You can enter anything except reserved characters.</td>
</tr>
<tr>
<td>fieldNumber=""</td>
<td>delimited, NMEA</td>
<td>Specifies the number of the field in the data string that contains the data for this field. Specify the fieldNumber as a decimal number, starting at 0. For example, fieldNumber="1".</td>
</tr>
<tr>
<td>start=""</td>
<td>fixed width</td>
<td>Specifies the character position, starting at 0. For example, start="21".</td>
</tr>
<tr>
<td>end=""</td>
<td>fixed width</td>
<td>Specifies the position of the first character to be excluded. The end value must be larger than the start value.</td>
</tr>
<tr>
<td>type="Number" or "Integer" or "String"</td>
<td>All</td>
<td>Specifies the type of data in this field. If you are using the SonarMite ESD file as a template for another ESD, you should delete the string sonarMiteFlags="True" for your customized ESD file to work with your echo sounder.</td>
</tr>
<tr>
<td>multiplier=""</td>
<td>All</td>
<td>If the type is "Number", then specify the multiplier value, which is the value to multiply the read value by to calculate the SI units. For example, multiplier="0.5468" to convert fathoms to meters.</td>
</tr>
</tbody>
</table>
Survey Settings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Applicable format</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>isDepth="True" or "False"</td>
<td>All</td>
<td>The default value is "False". A value of "True" indicates that the isDepth field is to be treated as the numeric value to display and process in the application, and any other values for depths are stored without display or interpretation.</td>
</tr>
<tr>
<td>isSecondaryDepth="True"</td>
<td>All or "False"</td>
<td>This parameter is designed for use with dual-frequency echo sounders to indicate that a field represents a depth returned based on the second echo sounder frequency. The default value is "False". A value of "True" indicates that the isSecondaryDepth field is to be treated as the numeric value to display and process in the application as a secondary depth (Depth 2). Any other values not flagged as isDepth="True" or isSecondaryDepth="True" are stored without display or interpretation.</td>
</tr>
<tr>
<td>allowZero="True"</td>
<td>All</td>
<td>Add this flag immediately after the isDepth="True" flag to accept depths that equal zero.</td>
</tr>
</tbody>
</table>

NMEA strings for echo sounders

Echo sounders may output one of several NMEA 0183 sentences. The most common sentences are described below for reference.

NMEA DBT - Depth Below Transducer

The NMEA DBT sentence reports water depth referenced to the transducer's position. The depth value is expressed in feet, meters, and fathoms.

For example: $xxDBT,DATA_FEET,f,DATA_METRES,M,DATA_FATHOMS,F*hh<CR><LF>

NMEA DBS - Depth Below Surface

The NMEA DBS sentence reports water depth referenced to the surface. The depth value is expressed in feet, meters, and fathoms.

For example: $xxDBS,DATA_FEET,f,DATA_METRES,M,DATA_FATHOMS,F*hh<CR><LF>

NMEA outputs

To output NMEA-0183 format messages from a port on the connected GNSS receiver or from the USB-Serial port of the Geo7X/GeoXR controller, configure the settings in the NMEA outputs screen of your GNSS survey style.

The fields that appear in the NMEA outputs screen are described below.
Use job coordinates

Select the Use job coordinates check box if you want the selected NMEA messages to be generated by the Trimble Access software so that they use the same coordinates and APC heights as the job. If you select this check box the available NMEA message types are limited to NMEA GGA, GGK, GLL and PJK messages.

Clear this check box if you want the selected NMEA messages to be generated by the receiver so that they use the height reference available in the receiver. For orthometric heights this means the geoid model built into the receiver firmware is used, not the one used by the job. Clearing this check box makes more NMEA messages available for output.

Note – NMEA output is always the position of the antenna phase center (APC). NMEA output during a compensated point measurement remains the APC; there is no tilt compensation applied to positions in the NMEA messages output in either receiver or job coordinates.

Messages to output

Select the message types to output, and the rate at which each message type is output. When the Use job coordinates check box is selected, rates faster than 1s apply only to positions generated during stakeout.

Serial port settings

Make sure the serial port settings match those set in the device that is receiving the NMEA messages.

Advanced settings

The Advanced settings group box contains configuration items that affect the format of the NMEA messages that are output.

Note – The IEC extensions, and the setting of the GST message to GPGST rather than GLGST or GNGST at all times, are available only when using NMEA generated by the receiver firmware, where the Use job coordinates check box is not selected.

Include IEC61162-1:2010 GNSS extensions

This setting selects which standard to use for the compliant messages. When not selected the NMEA messages comply with NMEA-0183 Standard for Interfacing Marine Electronic Devices, Version 4.0, November 1, 2008. When selected, the messages comply with the International Electrotechnical Commission (IEC) 61162-1, Edition 4 2010-11.

Max. DQI=2 in GGA

When selected, the Quality Indicator field in the GGA output message is never greater than 2 (DGPS). This is to support legacy systems that do not fully support the NMEA standard.

Max. age 9s in GGA

When selected, the age of differential data field in the GGA message is never greater than 9 seconds. This is to support legacy systems that do not fully support the NMEA standard.

Extended GGA/RMC

Select this check box to output high precision position data in the NMEA messages. Clear this check box to conform to the NMEA standard message length of 82 characters. If cleared, the precision of the position and height data is reduced by truncating the number of decimal places.
GP always

When selected, the NMEA talker ID is always GP for NMEA GST, GGA, and GLL messages regardless of the constellation(s) being tracked. For receiver firmware versions earlier than v5.10, the **GP always** setting applies only to the GST message type.

Duplicate point tolerance

In a GNSS survey, when you attempt to add a point name, the General Survey software warns you if a point of the same name already exists.

In a conventional survey, when you attempt to measure a point on face 2 that already exists as a face 1 measurement, no message appears to warn you that the point already exists.

In any type of survey, you can configure the software to warn you if you try to store a point with similar coordinates to another point already in the job. This proximity check enables you to avoid measuring points of a different name in the same location.

In a real-time GNSS survey or a conventional survey, you can set the tolerance for a duplicate point warning for points of the same name.

- In the *Same point name* group, specify the maximum distance that a new point can be from an existing point.
- A duplicate point warning appears when you try to store a new point only if it is a duplicate point outside the tolerance set.
- If the new point has the same name as an existing point, and is closer to the existing point than the tolerance specified, the point is stored as a new point, and does not overwrite the existing point.
- When you select the *Auto average* option in the survey style, the point is stored as a new point and an average of all previous positions (of the same name) is also stored.
- An averaged position has a higher search class than a normal observation.

If the new point is further from the original point than the tolerance specified, you can choose what to do with the new point when you store it. The options are:

- Discard
- Rename
- Overwrite - Overwrite and delete the original point, and all other points of the same name and the same (or lower) search class.
- Store as check - Store with a lower classification.
- Store and reorient - (This option only appears if you are observing a backsight point.) Store another observation that will provide a new orientation for subsequent points measured in the current station setup. Previous observations are not changed.
- Store another - Store the point, which can then be averaged in the office software. The original point is used in preference to this point.

Note – *If the Store another option is used with multiple observations to a point with the same name and from the same station setup, then when using Measure topo the system automatically computes and records a Mean Turned Angle (MTA) observation to the point.*
This MTA observation provides the preferential position for the point.

- Average - Store the point and then compute and store the averaged position.

Averaging methods

Two averaging methods are supported:

- Weighted
- Unweighted

You can select the averaging method in the Cogo settings screen.

Note – When you select Average, the current observation is stored and the computed average position appears, along with the computed standard deviations for the north, east, and elevation ordinates. If there are more than two positions for the point, a Details softkey appears. Tap Details to view the residuals from the average position to each individual position. You can use the Residuals form to include or exclude specific positions from the average computation.

Configuring the duplicate point tolerance for points with the same name

1. From the Trimble Access menu, tap Settings / Survey styles / <Style name>.
2. Select Duplicate point tolerance.
3. Specify the horizontal and vertical tolerances. If you set these distances to zero, a warning is always given.
4. To automatically compute and store the average position, select the Auto average within tolerance option.

Note –

- When the Auto average option is checked, and an observation to a duplicate point is within the specified duplicate point tolerances, the observation and the computed average position (using all the available point positions) are automatically stored.
- The General Survey software computes an averaged coordinate by averaging the grid coordinates computed from the underlying coordinates or observations. Observations that do not allow a grid coordinate to be resolved (for example, angles only observations) are not included in the average coordinate.

For more information, see Compute average.

Configuring the proximity check tolerance for points with different names

1. From the Trimble Access menu, tap Settings / Survey styles / <Style name>.
2. Select Duplicate point tolerance.
3. On page 2, select the Proximity check box in the Different point name group.
4. Specify the horizontal and vertical tolerances.

When you try to store a point that has coordinates that are within the horizontal tolerance of an observed point already in the job, then a warning message appears showing the tolerance distance and the measured horizontal distance between the two points. You can select to proceed with the measurement or cancel it.

Note –
• The vertical tolerance is only applied when the new observed point is within the horizontal tolerance. Use the vertical tolerance to avoid the proximity check warning when new points are measured above or below existing points but are legitimately at a different elevation, for example the top and bottom of a vertical kerb.

• The proximity check is only performed on observations, not on keyed in points. The proximity check is not performed in stakeout, GNSS Continuous measurement, or Calibration Point, and it is not performed in jobs with a No Projection coordinate system.

Face 1 and Face 2 observations

When you carry out two-face observations in a conventional survey during Station setup, Station Setup Plus, Resection, or when measuring Rounds, the General Survey software checks that the Face 1 and the Face 2 observations to a point are within a preset tolerance.

If the observations are out of tolerance, the Observation: Out of tolerance screen appears. The screen displays the following options:

• Discard - discard the observation without storing.
• Rename - rename to a different point name.
• Overwrite - Overwrite and delete the original point, and all other points of the same name and the same (or lower) search class.
• Store as check - store with a classification of Check.
• Store another - store the observation.

Once you have completed the Station Setup Plus, Resection, or Round measurements, the General Survey software saves the Mean Turned Angles to each of the observed points. The software does not check for duplicate points at this stage. Therefore, to use any of the observations to compute an average position for an observed point, you must select the Compute average option from the Cogo menu.

Feature libraries

You can create a feature library using the Feature Definition Manager in the Trimble Business Center software and then transferring the library to the controller, or you can create a feature code list directly in the controller using General Survey.

Note – Feature codes created using the General Survey software do not have attributes associated with them.

You may be able to use a feature library file that was created using an older version of Trimble software. For more information, see Types and versions of feature library files.

This topic explains:

- Creating a new feature code list
- Line codes
- Control codes
- Block codes
- Types and versions of feature library files
Creating a new feature code list

1. From the Trimble Access menu, tap Settings / Feature Libraries.
2. Tap New.
3. Enter the name of the list.
4. Tap the name of the new feature library file you just created and then tap Edit to add, delete, or edit codes.

 Note – An individual feature code cannot contain more than 20 characters. But the maximum number of characters in a code field is 60.

 Tip – The Code and Description are both displayed when you use feature libraries. Most recently used codes are displayed indented at the top of the list.

Feature code names that contain spaces appear in the General Survey software with a small dot between the words, for example, Fire-Hydrant. These dots do not appear in the office software.

Some symbols are not supported in feature libraries, for example ! and []. If you use unsupported symbols when creating a library in the office software, the General Survey software converts them to the underscore symbol "_" when they are transferred.

Line codes

When it is operating with a feature code library, the General Survey software can process the feature codes so that points with their Feature type set to Line or Polygon will be joined by lines. Polygons are automatically closed.

To configure a feature library for real-time feature code processing:

1. From the Trimble Access menu, tap Settings / Feature Libraries.
2. Select the feature library and then tap Edit.
3. Select the feature code and then tap Edit, or tap Add to create a new feature code.
4. Make sure the Feature type is set to Line or Polygon.
5. Select a Line color for the line.
6. Tap Accept and then tap Store to save the changes.

If the CAD line work filter is turned on in the map, the General Survey software draws lines between points, based on the specified display properties.

Note –

- There are 15 basic colors available when configuring the line color in the General Survey software.
- Colors can be defined in the office using the Feature Definition Manager software and transferred via an FXL file to the controller. The colors defined in the FXL file by the Feature Definition Manager software may not be identical to the colors used by the General Survey software.
- Colors can be defined in the Feature Definition Manager as 'By layer' or 'Custom'.
- When 'By layer' has been defined the General Survey software uses black.
- When 'Custom' has been defined the General Survey software uses the closest color match to the General Survey palette.
- You cannot define the color as 'By layer' or 'Custom' in the General Survey software. If set in the office software, these options are displayed in the General Survey software, and can be changed to a General Survey software color, but if this is done you cannot change them back.
- General Survey does not fill feature coded polygons.

Control codes

With line codes set up in a feature library (as described above), points that have the same code can be joined by lines.

Example - To survey the center line of a road, create a center line (CL) feature code as a Line feature type and assign the code CL to each measured point. If you have the CAD line work filter turned on, all points to which the code CL has been assigned are joined.

However, you will need extra line joining control to start new line sequences, close figures, and join specific points. To achieve this extra control, define control codes.

Note – When surveying a point that uses a control code you must assign a line code and then the control code. A control code always follows the line code it applies to and is separated from the Line code by a space character.

To create a control code, set the Feature type for a code you are editing to Control code. When you have done this, a new Control code action is available.

Example - To survey the center line of a road that has gaps, in addition to the center line (CL) feature code, create a start join (Start) feature code as a control code feature type and an end join (End) feature code as a control code feature type. To each measured point assign the code CL. To the point that defines the end of the center line sequence (that is, the start of the gap), select the CL feature code, insert a space and then select the End feature code. To the point that restarts the center line, select the CL feature code, insert a space and then select the Start feature code.

The following control code actions can be used with line codes:

<table>
<thead>
<tr>
<th>Control code</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Join to first (same code)</td>
<td>Enter this control code to join the point to the first point in the sequence that has the same code. For example, <code><Line code> <Join to first (same code)></code>. Whether the current point will also join to the next point that has the same code depends on the control code entered for the next point.</td>
</tr>
<tr>
<td>Join to named point</td>
<td>Enter this control code to join the current point to the point named after this control code in the code field. The control code and name should be separated by a space. For example, <code><Line code> <Join to named point> 123</code>. Whether the current point will also join to the next point that has the same code depends on the control code entered for the next point.</td>
</tr>
<tr>
<td>Start join sequence</td>
<td>Enter this control code to start a new join sequence. The current point is set as the first point in the sequence.</td>
</tr>
</tbody>
</table>
Control code | Action
--- | ---
End join sequence | Enter this control code to instruct the system that the current point is the last point in the join sequence. This means that the next point that has the same line code will not join to it.

Skip join | Operates in a similar fashion to the Start join sequence action, but it only stops the join action of the line code it is associated with. It does not make the current point the first point in a new join sequence. Skip join is ignored for polygons.

Start tangential arc | Enter the Start tangential arc control code to start an arc tangentially. The azimuth between the previous point with the same feature code, and the point that has the start arc control code, defines the entry tangent direction.

End tangential arc | Enter the End tangential arc control code to end an arc tangentially. The azimuth between the point with the end arc control code, and the next point with the same feature code, defines the exit tangent direction.

Start non-tangential arc | Enter the Start non-tangential arc control code to start an arc non-tangentially. You do not need a previous point with the same feature code to start an arc this way.

End non-tangential arc | Enter the End non-tangential arc control code to end an arc non-tangentially. No next point with the same feature code is required to end an arc this way.

Start smooth curve | Enter the Start smooth curve control code to start a smooth looking curve. Subsequent points are added to the smooth curve until you use the End smooth curve control code. If any point that makes up the curve has a null elevation then the entire curve is considered to be 2D, and will lie on the ground plane.

End smooth curve | Enter the End smooth curve control code to end a smooth curve. The next point is not added to the curve.

Start rectangle | Enter the Start rectangle control code to define a rectangle. Referring to the following diagrams, the rectangle can be defined by:
- Two points where the first point (1), defining one corner of the rectangle, uses the Start rectangle control code, the second point (2) defines the next corner of the rectangle and one of the two points includes a width value (3). For example, `<Line code> <Start rectangle> 8` for the first point and then `<Line code>` for the second point. When given a positive width value, the rectangle is drawn to the right of the line drawn from the first point to the second point. If the width value is negative, the rectangle is drawn to the left.
- Three points where the first point (4), defining one corner of the rectangle, uses the Start rectangle control code, the second point (5) defines the next corner of the rectangle and the third point (6) is used to define the width. For example, `<Line code> <Start rectangle>` for the first point, `<Line code>` for the second point and then `<Line code>` for the third point.
Control code Action

<table>
<thead>
<tr>
<th>Control code</th>
<th>Action</th>
</tr>
</thead>
</table>
| Start circle (center) | Enter the Start circle (center) control code to define a circle. Referring to the following diagrams, the circle can be defined by:
- One point (1) at the center of the circle where that point uses the Start circle (center) control code followed by a radius value (2). For example, <Line code> <Start circle (center)> 8.
- One point (3) at the center of the circle where that point uses the Start circle (center) control code and a second point (4), which lies on the edge of the circle, and is used to define the radius of the circle. For example, <Line code> <Start circle (center)> for the first point and then <Line code> for the second point. |
| Start circle (edge) | Enter the Start circle (edge) control code to define a circle. The circle is defined by three points that lie on the edge of the circle. The first point uses the line code and the Start circle (edge) control code, and the second and third points just use the line code. |
| Horizontal offset | Enter the horizontal offset and vertical offset control codes to offset feature coded lines and arcs by a horizontal or vertical value. These codes are ideal when surveying a curb and gutter where points would be measured at the flow line (invert) of the gutter with a line code and horizontal and vertical offset control codes. For example, <Line code> <Horizontal offset> 0.3 <Vertical offset> 0.04.
Refer to the following real world example of a curb and gutter where FL is the line code for the flow line, H is the horizontal offset control code and V is the vertical offset control code: |

Note - Rectangles are drawn respecting the elevation of all points.
Notes
- To break an offset use H - as the code.
- A negative horizontal offset value creates an offset to the left of the line. A negative vertical offset value creates an offset below the line.
- You cannot offset line work created using the smooth curve control codes.

Note –
- When processing the arc feature codes and if an arc cannot be computed, the segment is drawn as a dashed red line to indicate that something is wrong with the coding. Situations where this will occur are:
 - An arc is defined by two points and no tangency information is defined for at least one of the two points.
 - A two point arc is defined as being tangential at both the start and end but these tangents do not work.
 - A best fit arc from three or more points cannot be determined, for example when the points are all on a straight line.
 - Circles are drawn horizontal at the elevation of the first point with an elevation.

Block codes

Blocks must be created or edited using the Feature Definition Manager in Trimble Business Center. You can change the feature code and feature code description for the block using General Survey, if required.

To create a Block control code, set the Feature type for the code you are editing to Block control code. A new Control code action field is then available, which enables the following actions:
Control code	**Enter this control code to...**
Rotation | Rotate the block by the specified value about the current point in a clockwise direction.
Scale X | Scale the block along the X axis.
Scale Y | Scale the block along the Y axis.
Scale Z | Scale a 3D block along the Z axis.
From 1 point | Specify the construction of a block using the current point as the insertion point.
From 2 points | Specify the construction of a block using the current and next point as insertion points.
From 3 points | Specify the construction of a block using the current and next two points as insertion points.

Note – *Blocks are not actually constructed or displayed in the General Survey software. Points with feature codes that reference blocks are displayed with the appropriate block symbols when the file is imported to the Trimble Business Center software version 3.80 or later.*

Types and versions of feature library files

The options for adding and editing feature codes depend on the type and version of the feature library file you are using.

Note –

- *General Survey versions 1.00 and later can read FAL files*
- *Trimble Survey Controller version 11.40 and earlier and the Feature and Attribute Editor in Trimble Geomatics Office created FAL files.*

There are up to five fields to configure when adding or editing feature codes. The options available depend on the type of file:

- All feature libraries have a *Feature code* and *Description*.
- All feature libraries have a *Feature type*. You can edit the *Feature type* in a FAL file, and you can set the *Feature type* when you create a new FXL file, but you cannot edit the *Feature type* in a FXL file once it has been set.
- All feature libraries have a *Line style*. There are only two line styles supported by the General Survey software, *Solid lines* and *Dashed lines*.
- Only FXL feature libraries can have a *Line color*.
- Only version 3 FXL feature libraries can have a polygon feature type.

New FXL libraries created on the controller support all control codes. If you are using an old FXL file, then the control codes supported depend on the FXL file version.

- Smooth curve control codes need FXL file version 4 or later.
- Rectangle and circle control codes need FXL file version 5 or later.
• Horizontal and vertical offset control codes need FXL file version 6 or later.
• Block control codes need FXL file version 8 or later.

To upgrade older version files use the File / Save As option in the Feature Definition Manager and select the latest Save As format.

Configuring a radio data link

The General Survey software provides a Real-Time Kinematic survey style. Real-time kinematic surveys use a data link to send observations or corrections from the base station to the rover. The rover then calculates its position in real time.

Configuring the data link as a radio connection

1. Connect the controller, receiver, power, and radio. For more information, see Base receiver setup.
 Alternatively, use a Y-cable to connect the power and the controller directly to the radio.
2. From the Trimble Access menu, tap Settings / Survey styles / <Style name> and then tap Edit.
3. Select Base data link or Rover data link depending on which radio you are configuring.
4. Set the Type field to Radio.
5. Set the Radio field to the radio type you are using.
 If your radio does not appear on the list, select Custom radio and then define the receiver port, baud rate, and parity.
6. If the radio link being used has a known maximum data throughput rate, select the Bandwidth limiting check box and then enter the known maximum data value in bytes per second into the Bandwidth limit field.
 The GNSS base receiver uses this value to logically reduce the number of satellite messages so that the maximum rate is not exceeded. This option is available for CMR+, CMRx, and RTCM v3.x broadcast formats.
 If you have an old radio or run at low baud rates and if you’re not getting all the base SVs, try lowering the bandwidth limit until you do.
7. If the radio is connected:
 • directly to the receiver, clear the Route through controller check box. Specify the receiver port number that the radio is connected to, and the baud rate for communications.
 • to the controller, select the Route through controller check box. This enables real-time data between the receiver and the radio to pass through the controller. Specify the controller port number that the radio is connected to, and the baud rate for communications.

Note –
• To connect to and configure the internal settings of the radio you have selected, tap Connect.
• Some TRIMTALK and Pacific Crest radios must be in command mode before they can be configured. Command mode happens momentarily at power up. Follow the prompts to connect to the radio.

• If the Connect softkey is not displayed, you cannot configure the internal settings for the type of radio you have selected.

• To add a new receive frequency for the rover radio, tap Add Frq. Enter the new frequency and tap Add. The new frequency is sent to the radio and appears in the list of available frequencies. To use the new frequency, you must select the frequency from the list.

8. If the details are correct, tap Enter.

A radio signals icon appears in the status bar when a survey is started. If there is a problem with the data link between the base and rover receivers, a red cross is drawn over the radio signals icon.

Tap on the radio signals icon to check the settings. If the controller is connected to a receiver with an internal radio you can also reconfigure the radio's internal settings.

Tip - You can also access the data link configuration by tapping the Data link button in GNSS functions.

Note – In some countries it is illegal to change the frequency of a radio. The General Survey software uses the latest GNSS position to see if you are in one of these countries. If you are, only the available frequencies are displayed in the Frequency field.

If you select Base data link and set the Type field to Custom radio, you can also enable Clear To Send (CTS).

WARNING - Do not enable CTS unless the receiver is connected to a radio that supports CTS.

The Trimble R / 5000 series GNSS receivers support RTS/CTS flow control when you enable CTS. For more information on CTS support, refer to the documentation supplied with your receiver.

Note – The internal radio in a Trimble integrated GNSS receiver can also operate as a base radio if it is configured as a transceiver, and if the UHF Transmit option is on in the receiver. This avoids having to use an external radio solution at the base receiver to broadcast base data.

Radio considerations

Real-time survey methods rely on trouble-free radio transmission.

To reduce the effects of interference from other base stations operating on the same frequency, use a transmission delay for your base station that does not coincide with others on the same frequency. For more information, see Operating several base stations on one radio frequency.

Sometimes the conditions or topography of a site adversely affect radio transmission, resulting in limited coverage.

To increase site coverage:

• Move the base stations to prominent points around the site.
• Erect the base radio antenna as high as possible.
• Use radio repeaters.

Tip - Double the height of the broadcast antenna to increase the coverage by approximately 40%.

To achieve the same effect, it would be necessary to quadruple the radio broadcast power.
Radio repeaters

Radio repeaters increase the broadcast range of a base radio by receiving the base transmission and then rebroadcasting it on the same frequency.

You can use one repeater with a radio that has a 12.5 kHz channel spacing, and one or two repeaters with a radio that has a 25 kHz channel spacing. For details of the Trimble and Pacific Crest radios, please refer to the specific product documentation.

You can configure the Trimble R series internal radio to repeat base data to other rovers while performing a rover survey. This is known as a roving repeater setup. The internal radio can repeat the base signal over its UHF communication link to other rovers while simultaneously performing a rover survey. This option is available in Trimble GNSS receivers with internal radios that have the UHF Transmit option enabled. Select this repeater mode when you connect to the internal radio from the Rover data link screen in the Survey Style.

Note – To use any of these radios as repeaters, they must be configured as repeaters. To do this, follow the steps above to connect to the radio and then choose a repeater mode, which appears if the radio you are connected to supports being a repeater. Alternatively, if the radio has a front panel, use that to set the repeater mode.

Cellular modem – Overview

In a real-time survey, you can use an external modem or Trimble internal modem as the corrections data link between the base and the rover receivers, and to connect to the Internet to exchange data and email.

You can use a cellular modem at both the base and rover receivers. At the base, the cellular modem is connected to the receiver. At the rover, the cellular modem can be connected to the receiver or the controller.

Note –

- **Cellular modems used with the General Survey software must support Hayes compatible AT commands.**

- **Base receivers used with modems must support CTS flow control.**

You can use a cellular modem in dial-in mode to receive base data from a service provider that uses a dial-in modem as the service data link, or from a base station equipped with a modem configured to answer dial-in data calls. When you use your own base station, the rover cellular modem dials directly to the base cellular modem.

To use an external modem or Trimble internal modem in an RTK survey, configure the base and rover data link as a dial-in connection when you create or edit a survey style.

To perform an RTK survey using an Internet data link, use one of the following methods:

- Receive base data from a service provider, using a system such as the Trimble VRS Now™ subscription service.

- Use your own remote base station that is also connected to the Internet by an external modem or Trimble internal modem. If you use the external modem method, you must have a General Survey data collector connected at all times at the base.

If you use your own base station connected to the Internet, you can set up the base station to operate as a server that the rover will connect to, or to transfer the data to a distribution server.
When the base operates as a server, the number of rover connections to that base is limited by the capacity of the base Internet connection. In some cases, only one rover connection may be possible. When the base transfers data to a distribution server, the distribution server can send the base data to many rovers.

To use an external modem or Trimble internal modem to connect the controller to the Internet, see Connecting to the Internet. Configure the base and rover data link as an Internet connection when you create or edit a survey style. The modem must support an Internet connection.

Configuring an Internet data link

The General Survey software provides a **Real-Time Kinematic** survey style. Real-time kinematic surveys use a data link to send observations or corrections from the base station to the rover. The rover then calculates its position in real time.

To configure the data link as an Internet connection:

1. From the Trimble Access menu, tap **Settings / Survey styles / <Style name>** and then tap **Edit**.
2. If you are setting up the data link for the:
 - rover receiver, select **Rover data link**.
 - base receiver, select **Base data link**.
3. Set the **Type** field to Internet connection.
4. In the **GNSS contact** field, enter the GNSS contact name for an existing contact, or tap ![Contact] to select the GNSS contact from the list. The **GNSS Contact** list is filtered according to the contact type.

 To create a new GNSS contact, see Creating a GNSS contact for an Internet data link.
5. To display the GNSS contact that is configured in the survey style, or to change the GNSS contact when you start the survey, select the **Prompt for GNSS contact** check box.

When you start a survey using a Trimble internal modem, General Survey software connects to the mountpoint selected in the GNSS contact and then begins the survey. For more information, see Starting a real-time survey using a mobile Internet connection.

Configuring a dial-in data link

The General Survey software provides a **Real-Time Kinematic** survey style. Real-time kinematic surveys use a data link to send observations or corrections from the base station to the rover. The rover then calculates its position in real time.

To configure the data link as a dial-in connection:

1. From the Trimble Access menu, tap **Settings / Survey styles / <Style name>** and then tap **Edit**.
2. Select **Base data link** or **Rover data link** depending on which radio you are configuring.
3. Set the **Type** field to Dial-in.
4. In a dial-in rover survey, if you are connecting the cellular modem directly to the controller using a cable or Bluetooth, select the **Route through controller** check box.
5. From the GNSS contact field, tap the field menu (right arrow) button to access the GNSS contacts form. Select a GNSS contact from the list or create a new contact. You can also enter the GNSS contact name for a contact that you have already configured.

Note – The GNSS Contact list is filtered according to the modem type.

6. To display the GNSS contact that is configured in the survey style, or change the GNSS contact when you start the survey, select the Prompt for GNSS contact check box.

When you start the survey using the Trimble internal modem, the General Survey software dials the base station’s modem and then begins the survey. For more information, see Starting a real-time survey using a dial-in connection.

Note – You can also create and edit profiles by editing the [GNSSContacts.xml] file that is stored in the [System files] folder. To do this, copy the file to your computer, edit the file and then load it back into the [System files] folder.

GNSS contacts

If you use a cellular modem as the corrections data link for a real-time survey, you can create and configure the Internet or dial-in connection.

To add, edit, or delete entries in GNSS contacts, tap Settings / Connect / GNSS contacts from the Trimble Access menu.

Setting up a Bluetooth connection for an external cellular modem dial-in or mobile Internet connection

Before you start a survey using a cellular modem connected to the controller with Bluetooth, make sure that the phone is paired with the controller.

Bluetooth pairing must establish that both the controller and the modem have permission to communicate with each other.

To start the pairing process with a Bluetooth modem:

1. Make sure that the phone is turned on and that it is in discoverable mode.
2. From the Trimble Access menu, tap Settings / Connect / Bluetooth and then tap Config to bring up the Bluetooth configuration screen for the controller.

Tip – Tap the auto-connect icon before a connection is made, or tap the receiver icon after a connection is made, to access a shortcut to the Bluetooth configuration screen.

Creating and configuring cellular modem GNSS contacts

1. From the Trimble Access menu, tap Settings / Connect / GNSS contacts.
2. Tap New or select a GNSS contact to configure.
3. Enter the contact Name.
4. Select a Contact type.
 - If you are configuring the contact type of a rover that is obtaining corrections from the Internet, select Internet rover.
If you are configuring the contact type of a rover that will dial in to a modem to obtain corrections, select **Dial-in rover**.

If you are configuring the contact type of a base that is sending corrections to the Internet, select **Internet base**.

If you are configuring the contact type of a base that you will dial in to, using a modem to obtain corrections, select **Dial-in base**.

Note – You can also create and edit profiles by editing the [GNSSContacts.xml] file that is stored in the [System files] folder. To do this, copy the file to your computer, edit the file and then load it back into the [System files] folder.

Deleting a GNSS contact

1. From the Trimble Access menu, tap **Settings / Connect / GNSS contacts**.
2. Highlight the entry that is to be deleted.
3. Tap **Delete**.
4. When asked if you want to permanently delete the contact, tap **Yes**.

Creating a GNSS contact for a dial-in data link

1. From the Trimble Access menu, tap **Settings / Connect / GNSS contacts**.
2. Tap **New** or select a GNSS contact to configure.
3. Enter the contact **Name**.
4. If required, select a **Contact type**. If you are configuring the profile of a:
 - rover that will dial in to a modem to obtain corrections, select **Dial-in rover**.
 - base that you will dial in to using a modem to obtain corrections, select **Dial-in base**.
5. Enter all of the GNSS contact details.
6. Tap **Store**.

The following table shows cellular modem commands and information that may be useful when completing a new **GNSS contact**.

<table>
<thead>
<tr>
<th>Field</th>
<th>Information required</th>
<th>Functions of command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modem PIN</td>
<td>Number (4-8 digits).</td>
<td>Unlocks the cellular modem.</td>
</tr>
<tr>
<td>Init string</td>
<td>Command</td>
<td>Starts communication and sets up modem options.</td>
</tr>
<tr>
<td></td>
<td>Note – For the base modem, the command must leave the modem in auto-answer mode. Alternatively, set the auto-answer mode separately, using a Terminal program.</td>
<td></td>
</tr>
<tr>
<td>Hang up</td>
<td>Command</td>
<td>Ends communication.</td>
</tr>
<tr>
<td>Field</td>
<td>Information required</td>
<td>Functions of command</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Dial prefix</td>
<td>Command</td>
<td>Command used to initiate dialing number.</td>
</tr>
<tr>
<td>Number to dial</td>
<td>Phone number of the base station modem.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note – Use a comma (,) to send a short delay, for example, to separate the area code from the number.</td>
<td></td>
</tr>
<tr>
<td>Dial suffix (optional)</td>
<td>Command</td>
<td>Software sends to the modem after it has dialed the number.</td>
</tr>
<tr>
<td></td>
<td>Note – The Dial prefix, Number to dial, and Dial suffix values are concatenated to send to the modem.</td>
<td></td>
</tr>
<tr>
<td>Post connect (optional)</td>
<td>Once the connection is established between the base and rover modems, information is sent from the rover to the base. This is usually the log-in name and password.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note – Use a caret (^) to send a carriage return and a 3-second delay to the base system. For example, use this to separate a log-in name from a password.</td>
<td></td>
</tr>
</tbody>
</table>

When you start a survey using the Trimble Internal modem, General Survey software dials the base station’s modem and then begins the survey. For more information, see [Starting a real-time survey using a dial-in connection](#).

For information on starting a real-time survey using a cellular modem, see:
- Base receiver setup
- Starting a real-time survey using a dial-in connection
- Wide-area RTK surveys

Creating a GNSS contact for an Internet data link

In an RTK survey, you can use an external modem or Trimble internal modem as the data link between the base and the rover receivers.

Configuring a new GNSS contact for a rover survey

To configure a new GNSS contact to use an external or Trimble internal Internet connection for a rover survey:

1. From the Trimble Access menu, tap **Settings / Connect / GNSS contacts**.
2. Tap **New** or select a GNSS contact to configure.
3. Enter the contact **Name**.
4. If required, set the **Contact type** to Internet rover.
5. Configure the **Route through controller setting**.
When using the modem inside:

- the controller, the Route through controller setting is not applicable.
- another device such as a mobile phone connected to the controller, select Route through controller.
- the receiver, if incoming base data:
 - will be routed through the controller, enabling the controller to connect to the Internet for other functions such as AccessSync while connected to the Internet data link during an RTK survey, select Route through controller.
 - will not be routed through the controller, enabling the receiver but not the controller to connect to the Internet, disable Route through controller.

Note – If you enable Route through controller when using the modem in the receiver, you must connect the controller to the receiver using Bluetooth. For other configurations you can use Bluetooth or a serial cable.

6. In the **Network connection** field, key in a network connection or select one from the pop-up directory. To create a network connection for a:

- TSC3 / TCU / Slate / Geo7X / GeoXR controller, tap **Config.** See "To create or edit an Internet connection using a phone/modem for a Trimble non-tablet controller" in Connecting to the Internet.
- Trimble tablet, tap **Add.** See "To create a new network connection on the Trimble tablet" in Connecting to the Internet.

7. If required, enter the **Modem PIN**.

 The modem PIN may be required to unlock the cellular modem.

8. Specify an Access Point Name (APN) for the modem.

 To select a preset APN, tap the field menu (right arrow) button and select **Select Access Point Name (APN)** to select a **Location and Provider and plan**.

 You can also create and edit a preset APN list by editing the [ServiceProviders.xml] file that is stored in the [System files] folder. To do this, copy the file to your computer, edit the file and then load it back into the [System files] folder.

 The APN is provided by your internet service provider when you set up an account.

9. On a Trimble CU, if your mobile Internet provider requires a user name and password for a network connection, select the **Show 'Connect' dialog** check box in your GNSS contacts list. The system prompts you to enter a user name and password before it establishes a network connection.

 Note – The operating system on other non-tablet controllers does not support the Show 'Connect' dialog check box. This is because you can now specify a username and password when you create the network connection. These settings are saved on the controller so that you do not need to enter them each time you connect.

10. If the rover is to connect to the Trimble CenterPoint RTX correction service using an Internet connection, select the **Use RTX (Internet)** check box. When this check box is selected the **Mountpoint name** field appears. Select the mountpoint appropriate for your RTX subscription and region. The **RTXIP mountpoint** is for global RTX corrections, while others are particular to
specific network coverage areas.
If required, select the Use proxy server check box and enter the proxy server address and port. Then go to step 18.
Otherwise go to step 11.
11. If the rover is to connect to the base through NTRIP, select the Use NTRIP check box.
Otherwise go to step 14.
12. If the rover is to connect to the proxy server, select the Use proxy server check box and then enter the proxy server address and port. The proxy server check box appears when you select the NTRIP check box.
Obtain the proxy server address and port from the Internet service provider.
13. To connect to a Mountpoint on starting a survey, without being prompted for the Mountpoint name, select Connect directly to Mountpoint and enter a Mountpoint name.
If a Mountpoint name is not specified, the system will prompt you when you start a survey. Your selection will then be stored in GNSS contacts. If the specified mountpoint cannot be accessed when you start the survey, a list with available Mountpoints appears.
14. If required, enter an NTRIP username and NTRIP password.
15. If you are configuring a rover connection, enter the IP Address and IP Port number of the server you are connecting to as a source for base data into the Edit GNSS contact form.
Obtain the IP address of the base from the Internet GNSS correction data provider, or, if you are using a controller at the Internet base, use the IP Address and IP port values displayed in the IP Settings of this base field on the Base screen displayed on the controller at the base.
Note – If the IP address of the base controller appears to be invalid, Trimble recommends that you perform a soft reset of the device before you connect to the Internet and start the base.
16. In the Connection type field select the method your modem uses to connect to the Internet:
 • If your modem uses mobile Internet, select Mobile internet.
 • If your device is a CDPD modem, select CDPD.
 • If you are using a dial-up Internet connection where a phone number is used to dial your ISP, then select Dial-up.
17. If the rover must supply identification information through regular NMEA messages to the base data server, select the Send user identity info check box. At the start of the survey, the software asks you to enter this information.
18. Tap Store.
When you start the survey, the General Survey software establishes a network connection with the external modem or Trimble internal modem and then begins the survey. For more information, see Starting a real-time survey using a mobile Internet connection.

Configuring a new GNSS contact to use an Internet connection for a base survey
1. From the Trimble Access menu, tap Settings / Connect / GNSS contacts.
2. Tap New or select a GNSS contact to configure.
3. Enter the contact Name.
4. If required, set the Contact type to Internet base.
5. Configure the Route through controller setting.

 If you want the controller connected to the internet at the base, select Route through controller. This requires leaving the controller connected to the base receiver while the base survey is running.

 If you want the base receiver to upload base data to a server, disable Route through controller. The controller does not need to remain connected to the base receiver after the base survey is started. This requires receiver firmware version 3.70 or later.

 If you are disable Route through controller, go to step 11.

6. In the Network connection field, key in a network connection or select one from the pop-up directory. To create a network connection for a:

 - TSC3 / TCU / Slate / Geo7X / GeoXR controller, tap Config. See "To create or edit an Internet connection using a phone/modem for a Trimble non-tablet controller" in Connecting to the Internet.

 - Trimble tablet, tap Add. See "To create a new network connection on the Trimble tablet" in Connecting to the Internet.

7. If required, enter the Modem PIN.

 The modem PIN may be required to unlock the cellular modem.

8. Specify an Access Point Name (APN) for the external modem.

 To select a preset APN, tap the field menu (right arrow) button and select Select Access Point Name (APN) to select a Location and Provider and plan.

 You can also create and edit a preset APN list by editing the [ServiceProviders.xml] file that is stored in the [System files] folder. To do this, copy the file to your computer, edit the file and then load it back into the [System files] folder.

 The APN is provided by your internet service provider when you set up an account.

9. On a Trimble CU, if your mobile Internet provider requires a user name and password for a network connection, select the Show 'Connect' dialog check box in your GNSS contacts. The system prompts you to enter a user name and password before it establishes a network connection.

 Note – The operating system on other non-tablet controllers does not support the Show ‘Connect’ dialog box. This is because you can now specify a username and password when you create the network connection. These settings are saved on the controller so that you do not need to enter them each time you connect.

10. Set the Base operation mode to Upload data to remote server when the data should be uploaded to a server, or to Operate as a server.

11. If uploading data to a remote NTRIP server, select the Use NTRIP check box.

 - Specify a Mountpoint name.

 - If required, enter the NTRIP username and NTRIP password.

12. Do one of the following:

 - If you are configuring your GNSS contacts to Operate as a server, enter the IP Port.

 The IP Address and IP port values will be displayed in the IP Settings of this base field on the Base screen displayed on the controller at the base once the base is started.
Survey Settings

- If you are configuring a base connection to upload to a remote server, enter the IP Address and IP Port of the remote server.

 Note – If the IP address of the base controller appears to be invalid, Trimble recommends that you perform a soft reset of the device before you connect to the Internet and start the base.

 Tip - To connect a rover to the base, you must start a mobile Internet base with a public IP address.

13. In the Connection type field select the method your modem uses to connect to the Internet:
 - If your modem uses mobile Internet, select Mobile internet.
 - If your device is a CDPD modem, select CDPD.
 - If you are using a dial-up Internet connection where a phone number is used to dial your ISP, then select Dial-up.

14. Tap Store.

When you start the survey, the General Survey software establishes a network connection with the external modem or Trimble internal modem and then begins the survey. For more information, see Starting a real-time survey using a mobile Internet connection.

 Note – If the IP address of the base controller appears to be invalid, Trimble recommends that you perform a soft reset of the device before you connect to the Internet and start the base.

Testing a mobile Internet configuration in GNSS contacts

When there are connection problems or if the GNSS contacts contains incorrect settings, use the Test softkey to troubleshoot:

1. From the Trimble Access menu, tap Settings / Connect / GNSS contacts.
2. Highlight the GNSS contact entry that you want to test.
3. Tap Edit and then tap Test.
4. General Survey steps through the connection process using the settings defined in the GNSS contacts file and tests the settings to make sure that they are correct. If the test fails Bluetooth or modem connection settings, or if the APN activation does not succeed, a report is generated detailing the problem and suggesting a solution.

 Note – Only mobile Internet GNSS contacts can be tested.

Connecting to the Internet using a GNSS contact

1. From the Trimble Access menu, tap Settings / Connect / GNSS contacts.
2. Highlight a GNSS contact that is configured for an Internet connection.
3. Tap the Connect button at the bottom of the GNSS contacts form. An Internet connection is established and a check mark appears next to the contact to show that it is in use.
4. To end the Internet connection, highlight the GNSS contact and then tap Hang up.

If you start a survey that uses a mobile Internet data link after you establish an Internet connection in GNSS contacts, then the General Survey software uses the already established connection for the survey.
Note –
- The Access Point Name (APN) that you enter provides network routing and connection information for the service being requested. You can obtain this information from your mobile Internet service provider.
- If you are using the Receiver Internal modem for an Internet connection and you are connected to the receiver through Bluetooth wireless technology, you must select the receiver in the Bluetooth modem field of the Edit GNSS contacts form.

Networked Transport of RTCM via Internet Protocol (NTRIP)

NTRIP uses the Internet to distribute real-time GNSS base station data.

When GNSS contacts is correctly configured and you start the survey, a connection is established to the NTRIP server. In addition, a table appears showing the available sources of corrections from the server. These can be single station sources, or network sources (for example, VRS). The type of base station data that this "mount point" provides is shown in the source table. Select the source that you want to use. When you do this, a connection is made to that source, and base station data begins to stream through General Survey to the connected GNSS receiver.

Note – To determine the closest source, tap the Distance from here heading to sort that column.

If authentication is required to connect to a particular mount point, and this was not configured in GNSS contacts, the General Survey software displays a screen where you can enter your user name and password.

When the General Survey software connects to the NTRIP caster, it checks if the caster supports NTRIP version 2.0.

- If the caster acknowledges that it supports version 2.0, the General Survey software communicates using version 2.0 protocols.
- If the caster does not support version 2.0, the General Survey automatically uses NTRIP version 1.0.

To force the General Survey software to always use NTRIP version 1.0, select the Use NTRIP v1.0 check box when you configure the NTRIP settings.

NTRIP version 2 includes improvements to the original standard. The General Survey software now supports the following NTRIP version 2 features:

<table>
<thead>
<tr>
<th>NTRIP 2.0 feature</th>
<th>Advantages over 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full HTTP compatibility</td>
<td>Addresses proxy server issues.</td>
</tr>
<tr>
<td></td>
<td>Supports virtual hosts using the "Host directive".</td>
</tr>
<tr>
<td>Chunked transfer encoding</td>
<td>Reduces data processing time.</td>
</tr>
<tr>
<td></td>
<td>More robust data checking.</td>
</tr>
</tbody>
</table>
Connecting to the Internet

Internet connection settings are managed in Internet Setup. To get to the Internet Setup screen in Trimble Access, do one of the following:

- From the Trimble Access menu, tap Internet Setup.
- Tap Settings / Connect / Internet Setup.
- Tap the Internet Connection button or from the Trimble Access task bar.

The steps required to connect to the Internet depend on the controller you are using. For more information, see the sections below:

- Connecting to the Internet on a Trimble non-tablet controller
- Connecting to the Internet on a Trimble tablet

Connecting to the Internet on a Trimble non-tablet controller

To connect to the Internet on a TSC3 / Slate / Geo7X / GeoXR, create an internet connection using the controller’s internal modem. Alternatively, you can connect to the Internet using the internal Wi-Fi radio.

The Trimble CU controller does not have an internal cellular modem so you must use an external phone or modem to connect to the Internet. Before you start, do one of the following:

- If you are using a cable, connect the cellular modem data cable to the serial port on the controller.
- If you are using Bluetooth wireless technology, make sure that Bluetooth is enabled, and that the cellular modem is paired and connected.

Once you are connected to the phone or modem, create an Internet connection as you would if you were using a controller with an internal modem.

To activate a Trimble non-tablet controller on a CDMA network:

If you are using a Geo7X, or a TSC3 controller with an integrated dual-mode modem in the United States and have the appropriate subscription, you can use it to access the Verizon CDMA network. The dual mode modem can run in GSM/GPRS mode or CDMA mode.

All Geo7X controllers have a dual-mode modem. TSC3 controllers with a dual-mode modem have a part number ending in -002 (for example TSC3112-002). To check the part number of your TSC3 controller, remove the battery to view the label affixed to the left side of the battery compartment.

The phone must be "activated" before accessing the CDMA network. You may need to provide the MEID to your service provider before activation. This only needs to be done once. The phone must be registered in order to activate it.

To activate the phone on a Geo7X/TSC3 controller:

1. From the Trimble Access menu, tap Internet Setup.
2. Tap GSM/CDMA settings.
3. Select CDMA mode.
4. Tap Activate.
To create or edit an Internet connection using a phone/modem for a Trimble non-tablet controller:

1. From the Trimble Access menu, tap **Internet Setup**.
2. Select **Phone / Modem**.

 Note - If you are using a controller with an integrated dual-mode modem, tap GSM/CDMA settings to switch the modem to the desired mode. If you are using a CDMA network, you must activate the phone before you can use it. See "To activate a Trimble controller on a CDMA network" above.

3. Tap the New/Edit button.
4. From the drop-down list, select the **Port**. This is the type of connection from the controller to the cellular modem. If you are using:
 - If you are using the controller's internal modem select **Internal modem**.
 Tip - Access for the SIM card is under the battery on the TSC3 controller, and is through a port on the left side of the Slate / Geo7X / GeoXR controller.
 - If you are using a mobile Internet CF card, select **mobile internet modem**.
 - If you are using Bluetooth wireless technology, select **Bluetooth**.
 - If you are using a cable, select **Hayes Compatible on COM1**. If you are using a CU controller, you may need to select **Hayes Compatible on COM2**.

 If you select **Bluetooth**, select the Bluetooth device from the drop-down list, which shows all modems that are paired with the controller. If your device does not appear in the list, you must pair the device. For more information, see **Bluetooth**.

5. If your modem requires a PIN, select **My Modem Requires A PIN**, enter the PIN and then tap **Ok**.
6. Tap **Next**.
7. Select the details for your **Home network location**, **Service provider**, and **Plan**.

 If these details are not in the list, you can manually configure them:
 a. Tap **Add Service Provider**.
 b. For the **APN**, either enter a value, select **None**, or use the **Select Access Point Name (APN)** wizard. In the wizard, select your country in the **Location** field, and select your **Provider and plan**. Tap **Accept**. The **APN** field is updated.
 c. In the **Number to dial** field, enter *99***1#. The *99***1# is a standard access code for mobile Internet. If you are unable to connect using *99***1#, contact your mobile Internet provider.
 d. Enter a **Username** and **Password** if required by your network connection.
 Tip - If you are using a TSC3/Slate/Geo7X/GeoXR controller and you have selected an internal modem, tap the **Detect** button to extract the service provider information detected by the SIM card.
8. Tap **Next**.

 If you are using a controller with an integrated dual-mode modem, and if the modem is set incorrectly for your connection type, you are prompted to switch modes.
9. Enter a name for the connection setup and then tap **Finish**.
Notes

- If a connection of the same name already exists, you are prompted to overwrite the old connection. If you do not want to overwrite the old connection, tap No and then save the new connection with a different name.

- If the default service provider details are modified, the new details are saved to a [userserviceproviders.xml] file, located on the controller under \Program Files\Trimble\Common. If you want to recover the default values, you must remove this file from the controller.

- After three attempts to unlock the SIM card using an incorrect PIN, the SIM card is blocked, except for emergency calls. You are prompted to enter a PUK (Personal Unblocking Key) code. If you do not know the PUK for your modem, contact the supplier of the modem SIM card. After ten unsuccessful attempts to enter the PUK, the SIM card is invalidated and is no longer operable. When this occurs, you must replace the card.

To connect, disconnect, or view the current state of your phone/modem internet connection on a Trimble non-tablet controller:
Once you correctly save a connection, you can use it to easily reconnect to the Internet:

1. From the GPRS Connection drop-down list, select the pre-configured connection.
2. If using Bluetooth technology, make sure that Turn on Bluetooth is selected.
3. Tap Connect.

Once the connection is established, the Internet Setup status bar updates to Internet connection <connection name> established, and the Connect button changes to Hang up. To disconnect, tap Hang Up.

When there is no connection, the Internet Setup status bar updates to Internet not connected and the Hang Up button changes to Connect. There is also an Internet connection indicator in the task bar, which is visible in other Trimble Access screens.

Tip - To enable other applications on your non-tablet controller, such as a web browser, to use the Internet connection you have set up in Trimble Access, make sure the Programs that automatically connect to a private network should connect using setting is set to TrimbleNet. To edit this setting, from the Windows Start menu, tap Settings / Connections and then tap the Connections icon. Select the Advanced tab and then tap Select Networks.

Notes

- The current Windows Mobile Device Center or Wi-Fi connection to the controller is displayed in the Internet Setup wizard.

- When you have a Wi-Fi connection to a camera, the Internet setup wizard may incorrectly report that a Wi-Fi connection was established.

- To use a Wi-Fi connection to a camera and an Internet connection at the same time, you must first create the Internet connection and then create the connection to the camera.

To create or edit an Internet connection using a Wi-Fi connection for a TSC3 / Geo7X / GeoXR controller:

1. From the Trimble Access menu, tap Internet Setup.
2. Select Wi-Fi. This enables Wi-Fi on the controller.

 Note - To disable Wi-Fi on the controller, select the Phone / Modem option.
3. To configure and connect to Wi-Fi:
 - On the TSC3 controller tap Start / Settings / Connections / Wi-Fi.
 - On the Trimble Geo7X controller tap the Trimble button, select Start menu and then select Settings / Connections / Wireless Manager. Tap Menu and then select Wi-Fi Settings.
 - On the Trimble GeoXR controller tap the Trimble button, select Start menu and then select Settings / Connections / Wi-Fi.

 If you have already configured and connected to the network, the controller automatically connects to this network if it is in range.

Connecting to the Internet on a Trimble tablet

The Trimble tablet has a dual-mode cellular modem. If you are using a CDMA network, you must activate the phone before you can use it. For more information, refer to the Support Note "Yuma 2: Activation of CDMA/Verizon Connectivity" available from www.trimble.com. The exact steps for connecting to the Internet on a third-party tablet depend on the utilities installed with the operating system. Use the steps below as a guide, but for detailed information refer to the documentation provided with your tablet.

Connect the tablet to the Internet using one of the following methods:

- An external phone or modem connected using Bluetooth wireless technology
- The tablet's internal cellular modem
- The tablet's integrated Wi-Fi radio

To create a new network connection on the Trimble tablet using a phone or modem:

Note - If you are using an external phone or modem connected using Bluetooth technology, make sure that you have paired with your Bluetooth device before creating a network connection.

1. From the main Trimble Access menu, tap Settings / Connect / GNSS contacts.
2. Tap New.
3. In the Edit GNSS contact screen, tap the arrow next to the Network connection field.
4. From the Network connection page, tap Add.
5. Enter a Name for the network connection.
6. If you are using:
 - An external phone or modem connected using Bluetooth, select a Bluetooth modem from the list of paired devices.
 - The tablet's internal cellular modem, select the Controller internal modem check box.
7. For the APN, either enter a value, select None, or use the Select Access Point Name (APN) wizard. In the wizard, select your country in the Location field, and select your Provider and plan. Tap Accept. The APN field is updated.
8. In the Number to dial field, enter *99***1#. The *99***1# is a standard access code for mobile Internet. If you are unable to connect using *99***1#, contact your mobile Internet provider.
9. Enter a Username and Password if required by your network connection.
10. Tap Accept to create the new network connection.

Notes
- To view the settings of an existing network connection, highlight the connection and then tap the Edit softkey.
- To create a network connection outside of GNSS contacts, use Internet Setup from Trimble Access menu or select Settings / Connect / Internet Setup. Internet Setup will take you directly to the Windows Network and Sharing Center.

To create or edit an Internet connection using a Wi-Fi connection for the Trimble tablet:

If the tablet is running the Windows 10 operating system:
2. Select Wi-Fi and make sure it is turned on.
3. Select the Wi-Fi network to connect to. For more information, refer to the Windows Help.

If the tablet is running an earlier version of Windows:
2. To create a Wi-Fi connection, select [Set up a new connection or network]. For more information, refer to the Windows Help.

Bluetooth

You can configure a Trimble controller to connect to these devices using Bluetooth wireless technology:
- a Trimble R or 5000 GNSS receiver
 Note – Trimble 5700 receivers do not support Bluetooth wireless technology.
- an auxiliary GPS receiver
- a conventional instrument that has Bluetooth wireless technology
- a TDL2.4 radio
- an active target
- supported Bluetooth laser rangefinders
- supported Bluetooth echo sounders
- another Trimble controller
- a Bluetooth-capable cellular modem
- a Zebra P4T mobile printer

The steps for connecting a controller to another device are listed below. For more information about a particular step, see the sections below.
1. Turn on both devices.
2. Enable Bluetooth on the device.
3. **Enable Bluetooth on the controller.**
4. **Start a scan on the controller.**
5. Once the scan is complete, **pair with the device.**
6. **Connect the Trimble Access software to the paired device.**

Enabling Bluetooth on the device

<table>
<thead>
<tr>
<th>For a...</th>
<th>Do the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trimble R / S000 series GNSS receiver</td>
<td>Refer to the documentation provided with your receiver.</td>
</tr>
</tbody>
</table>
| Conventional instrument | **Trimble VX Spatial Station or Trimble S Series total station**
 - Turn on the instrument and then use the Face 2 display on the instrument to turn on Bluetooth wireless technology.
 - *Note* - The menu of the Face 2 display on the instrument can only be accessed when the instrument is On and the General Survey software is not connected. From the electronic level screen, select [Set] to access the menu and configure Bluetooth wireless technology. |
| Other conventional instruments | Refer to the documentation provided with your instrument. |
| TDL2.4 radio | On the TDL2.4, press the Radio button for 2 seconds to make it discoverable. The blue and red LEDs will blink, indicating the radio is ready to be paired with.
 - *Note* – If you press and hold the radio button for longer than 10 seconds then all stored Bluetooth pairings in the TDL2.4 are cleared. You will need to recreate any Bluetooth pairings between the TDL2.4 and your controller(s). |
| Active target | Bluetooth is always enabled when the active target is on. |
| Laser rangefinder | Refer to the table in Configuring the survey style to use a laser rangefinder. |
| Echo sounder | Refer to the documentation provided with your echo sounder. |
| Zebra P4T printer | See Setting up and using the P4T printer. |
| Another Trimble controller | See Enabling Bluetooth technology on the controller below. |
| A cellular modem | On the cellular modem, select the option to make the cellular modem discoverable. For more information, refer to the documentation provided with your modem. |
Enabling Bluetooth technology on the controller

Note – If you are connecting a controller to another controller, complete these steps on both controllers.

1. From the Trimble Access menu, tap *Settings / Connect / Bluetooth*.
2. Refer to the table below for specific steps for your controller(s):

<table>
<thead>
<tr>
<th>For a...</th>
<th>Do the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trimble tablet</td>
<td>Tap the arrow in the system tray. If the Bluetooth icon is grayed out, tap Turn adapter on.</td>
</tr>
<tr>
<td>TSC3/Geo7X/GeoXR/Slate</td>
<td>Tap the [Mode] tab and then make sure that the [Turn on Bluetooth] and [Make this device visible to other devices] check boxes are selected.</td>
</tr>
<tr>
<td>Trimble CU (Model 3) controller</td>
<td>Select the Power tab and then make sure that the [Enable Bluetooth] and [Discoverable] check boxes are selected.</td>
</tr>
<tr>
<td>Trimble CU controller</td>
<td>Make sure that the [Enable Bluetooth] check box is selected.</td>
</tr>
</tbody>
</table>

Enabling Bluetooth automatically

You can automatically enable Bluetooth technology when required. This allows General Survey to switch on Bluetooth should Bluetooth become disabled by actions outside of Trimble Access. To do this, tap *Settings / Connect / Bluetooth* from the Trimble Access menu, and then select the *Automatically enable Bluetooth* check box.

Starting a scan on the controller

Note – If you are connecting a controller to another controller, complete these steps on one controller. To make it easier to identify the correct controller when scanning, give the controller a unique name (see *Giving your controller a unique name*).

On the controller, from the Trimble Access menu, select *Settings / Connect / Bluetooth* and then do the following:

<table>
<thead>
<tr>
<th>For a...</th>
<th>Do the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trimble tablet</td>
<td>Tap Config. The Windows [Devices] screen appears and the controller automatically scans for devices. If the device you want to connect to does not automatically appear, tap [Add a device].</td>
</tr>
<tr>
<td>TSC3/Geo7X/GeoXR/Slate</td>
<td>Tap the [Devices] tab and then tap [Add new device...].</td>
</tr>
<tr>
<td>Trimble CU (Model 3) controller</td>
<td>Tap the [Scan Device] tab and then tap [Scan].</td>
</tr>
<tr>
<td>Trimble CU controller</td>
<td>Tap [Scan Device].</td>
</tr>
</tbody>
</table>

The controller searches for other Bluetooth wireless technology devices within range.
Note

- *A device does not respond to a scan if it is already connected through Bluetooth wireless technology.*
- *Do not perform a scan on more than one controller at a time. A Bluetooth device cannot respond if it is scanning.*

Pairing a controller with a device

To pair with a cellular modem, see **Pairing a controller with a cellular modem.**

To pair a controller with any device except a cellular modem, use the steps below.

1. Once the scan is complete, highlight the Bluetooth device to connect to and then:

<table>
<thead>
<tr>
<th>For a...</th>
<th>Do the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trimble tablet</td>
<td>1. Tap [Next].</td>
</tr>
<tr>
<td></td>
<td>2. Unless prompted for a passkey, select [Pair without using a code].</td>
</tr>
<tr>
<td></td>
<td>3. If you are pairing with a controller, tap [OK] to accept the pairing with the Trimble tablet, enter the code shown on the Trimble tablet, tap [Next] and then tap [Finish].</td>
</tr>
<tr>
<td></td>
<td>4. Once the device driver software is installed (if required), tap [Close].</td>
</tr>
<tr>
<td>TSC3/Geo7X/GeoXR/Slate</td>
<td>1. Tap [Next]. Do not enter a passkey unless prompted.</td>
</tr>
<tr>
<td></td>
<td>2. Enter a display name for the device and then tap [Done].</td>
</tr>
<tr>
<td>Trimble CU (Model 3)</td>
<td>Tap the -> softkey to make it a Trusted device.</td>
</tr>
<tr>
<td>controller</td>
<td>When connecting one controller to another controller, you do not need to Authenticate the device. When the authentication message appears, tap [No].</td>
</tr>
<tr>
<td>Trimble CU controller</td>
<td>Note - To avoid time-out issues when pairing with a Trimble CU controller, Trimble recommends that you use a short pairing code and enter the code quickly.</td>
</tr>
</tbody>
</table>

2. Tap [OK].

Passkeys

Some devices prompt you for a passkey. Enter the PIN/passkey provided by the manufacturer. The default passkey for a:

- *Trimble R/5000 series GNSS receiver is 0000, although a passkey is usually not required.*
- *Trimble LaserAce 1000 or MDL LaserAce laser rangefinder is 1234.*
- *Ohmex SonarMite echo sounder is 1111.*

For passkeys for other devices, refer to the documentation provided with the device.
Connecting the Trimble Access software to the paired device

Complete these steps for all devices except a cellular modem:
1. From the Trimble Access menu, tap Settings / Connect / Bluetooth.
2. Select the device to connect to from the appropriate field and then tap Accept.

 If Auto connect is enabled, the Trimble Access software connects to the device within a few seconds. Otherwise, start a survey to connect to the device.

 Note –
 - **To connect the TDL2.4 to a Trimble VX Spatial Station or Trimble S Series total station,** you must configure the TDL2.4 to use the same radio settings as the instrument.
 - **When connecting to another Trimble controller,** you must select the device name from the Send ASCII data to field on the controller that is sending the data. When you tap Accept, the controllers are configured to send and receive ASCII data.

3. Tap Accept.

 Note – **Unless you change the setting in the device field in the Bluetooth screen,** the controller automatically connects to the selected device the next time you turn on both devices.

Pairing a controller with a cellular modem

To pair with a cellular modem you must establish a secure connection.
1. Once the scan is complete, highlight the cellular modem to connect to and then:

For a...	**Do the following:**
Trimble tablet	Tap [Next].
TSC3/Geo7X/GeoXR/Slate	1. Tap [Next].
2. Enter a passkey of your choice (for example, 1234) to establish a secure connection.	
Note - **Do not tap [OK] until you complete step 2.**	
Trimble CU controller	1. Tap the --> softkey to make it a Trusted device.
2. When prompted to authenticate the device, select [Yes].	
3. When the [Enter Pin] dialog appears, enter a PIN of your choice, for example, 1234.	
Note - **Do not tap [OK] until you complete step 2.**	

2. On the cellular modem, select the appropriate option to accept a pairing request.

 Note – **The controller must become a paired/trusted device on the phone.**
3. To complete pairing the devices:

<table>
<thead>
<tr>
<th>For a...</th>
<th>Do the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trimble tablet</td>
<td>a. Select [Create a pairing code for me] to see a pairing code.</td>
</tr>
<tr>
<td></td>
<td>b. On the cellular modem device: Enter the code shown on the</td>
</tr>
<tr>
<td></td>
<td>Trimble tablet and then tap [OK].</td>
</tr>
<tr>
<td></td>
<td>c. On the Trimble tablet, tap [Close] once the device driver software is</td>
</tr>
<tr>
<td></td>
<td>installed (if required).</td>
</tr>
<tr>
<td>TSC3/Geo7X/GeoXR/Slate</td>
<td>1. Tap [Next].</td>
</tr>
<tr>
<td></td>
<td>2. Enter a display name for the device and then tap [Finish] /</td>
</tr>
<tr>
<td></td>
<td>[Done].</td>
</tr>
<tr>
<td>Trimble CU controller</td>
<td>Tap [OK] on the [Enter Pin] dialog.</td>
</tr>
</tbody>
</table>

The cellular modem prompts you to add the controller as a paired device and allows you to enter the corresponding PIN you selected in step 1. The controller is now listed as a paired device on the cellular modem, and the cellular modem is added to the list of trusted devices on the controller.

4. Tap [OK].

Note – If you use the General Survey software to dial a base station directly using a Bluetooth cellular phone, do not run [Bluetooth2Mobile.exe]. If you do, the software cannot connect to the modem; the error message Connection failed appears.

To connect to the Internet, you must create a dialing location and start a mobile Internet connection. For more information see Connecting to the Internet.

To use a cellular modem for real-time surveying, see Cellular modem – Overview.

Giving your controller a unique name

You can give your controller a unique name. This makes it easier to identify when searching for it in a Bluetooth scan.

To do this:

<table>
<thead>
<tr>
<th>For a...</th>
<th>Do the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trimble tablet</td>
<td>Go to [Windows Start \ Control Panel \ System]. Tap [Change settings], enter</td>
</tr>
<tr>
<td></td>
<td>a new computer name in the [Computer Name] tab and then tap [Change...].</td>
</tr>
<tr>
<td></td>
<td>Tap [OK] and then tap [OK] again to confirm restarting the computer. Tap [Close]</td>
</tr>
<tr>
<td></td>
<td>and then tap [Restart Now].</td>
</tr>
<tr>
<td>TSC3</td>
<td>Go to [Start \ Settings \ System \ About]. Tap the [Device ID] tab and change the</td>
</tr>
<tr>
<td></td>
<td>[Device Name] field, and then tap [Ok]. Press and hold the power key to</td>
</tr>
<tr>
<td></td>
<td>perform a soft reset on the controller.</td>
</tr>
<tr>
<td>Geo7X/GeoXR</td>
<td>Tap the Trimble button, select Start menu and then select [Settings \ System</td>
</tr>
<tr>
<td></td>
<td>\ About]. Tap the [Device ID] tab, change the [Device Name] field and then tap</td>
</tr>
<tr>
<td></td>
<td>[Ok]. Press and hold the power key to perform a soft reset on the controller.</td>
</tr>
</tbody>
</table>
For a... | Do the following:
--- | ---
Slate controller | Press the Windows button to access the [Start] menu and select [Settings \ System \ About]. Tap the [Device ID] tab and change the [Device Name] field, and then tap [Ok]. Press and hold the power key to perform a soft reset on the controller.

Trimble CU (Model 3) controller | Go to [Start \ Settings \ Control Panel \ System]. Tap the [Device Name] tab, change the [Device name] field and then tap [Ok]. To reset the controller, hold down the Power key and then select [Options / Reset].

Trimble CU controller | Go to [Start \ Settings \ Control Panel \ System]. Tap the [Device Name] tab and change the [Device name] field, and then tap [Ok]. To reset the controller, go to [Start \ Programs \ Utilities\Reset \ Soft Reset].

Wi-Fi

To set up a Wi-Fi connection from the tablet controller to the Trimble SX10 scanning total station:
1. Make sure Wi-Fi is enabled on the tablet. To enable Wi-Fi:
 a. Tap the Trimble button in the top left corner of the application window to access the Start menu, and then select [Control Panel / Tablet PC Settings].
 b. Tap [Network and Sharing Center].
 c. From the options on the left, tap [Change adapter settings].
 d. Tap and hold the [Wireless Network Connection] icon and then select [Enable].
2. From the Trimble Access menu, tap Settings / Connect / Wi-Fi.
3. If the device to connect to is not listed, tap Scan. The controller scans for Wi-Fi devices and adds them to the list.
4. In the list, tap the device to connect to and then tap Enter.

To quickly disconnect from the Trimble SX10 scanning total station or to switch the connection type between LRR and Wi-Fi, tap the Trimble SX10 scanning total station icon in the status bar, tap Connections and then tap the appropriate button.

To remove an instrument from the list that is no longer required and not currently within range, select it in the list and then tap Forget.

Compass

If your Trimble controller includes an internal compass, you can use it when staking out a position or navigating to a point. The compass provides direction when you initially start stakeout and when you are close to the stakeout point and viewing the bullseye screen. After you first start stakeout, but before you get close enough to view the bullseye screen, positions are used from the GNSS or total station which give a more accurate heading.
When the compass is enabled, the following enhanced North arrow is displayed:

![North Arrow](image)

To disable the compass when you are near magnetic fields that may cause interference, select *Navigate to point / Options* or *Stakeout / Options*. See *Navigate to point* or *Stakeout options*.

Compass calibration

Because the performance of the compass is impacted by magnetic fields, Trimble recommends re-calibrating the compass when the controller is taken into different environments.

To configure the magnetic declination, select *General Survey / Jobs / Properties of job / Cogo settings*. See *Magnetic declination*.

To calibrate the controller’s internal compass:

1. Select *Settings / Connect / Compass*.
2. Follow the on-screen steps 1 through 5 to calibrate the compass.
3. To exit the calibration process, tap *OK*.

Transferring files between controllers

You can use the Beam program on Microsoft Windows Mobile controllers to transfer any type of file between two Trimble non-tablet controllers, or from a Trimble non-tablet controller to an office computer using Bluetooth wireless technology.

Note – *This topic does not apply to Trimble CU controllers. To transfer files from a CU controller to an office compute, you must use the Trimble Data Transfer utility or Windows Mobile Device Center. For more information, see Using Bluetooth to Connect a Trimble CU to an Office Computer.*

1. Enable Bluetooth wireless technology on the controller/s.

 - On a Slate and TSC3 controller, press the Windows Start button to open the Start menu and then tap [Settings / Bluetooth]. Select [Mode] and make sure that the [Turn on Bluetooth] and [Make this device discoverable to other devices] check boxes are selected.
 - On a Geo7X/GeoXR controller, tap the Trimble button, select *Start menu* and then tap [Settings / Bluetooth].
 Tap the [Mode] tab and make sure that the [Turn on Bluetooth] and [Make this device discoverable to other devices] check boxes are selected.

2. Close the General Survey software. Otherwise, the file transfer may fail.

3. On the controller that is to send the file, select [Start / Programs / File Explorer]. Browse to find the file to send.

4. Set up the device that will receive the file.
 - If you are sending to a controller, browse to [Start / Settings / Connections / Beam] and make sure that the *Receive all incoming beams* check box is selected.
If you are sending to an office computer, you must initiate the computer to receive a file.

5. On the controller **sending** the file, tap and hold on the file and then tap [Beam File]. You can select only one file at a time to send.

6. The controller scans for devices within range. Select the device that you want to send the file to.

7. On the receiving device, accept the file. The file is transferred.

For help with Bluetooth issues, go to **Troubleshooting**.

Language

To change the language of the General Survey software:

1. Transfer the language file to the controller.
2. From the Trimble Access menu, tap **Settings / Languages**.
3. Choose the required language from the list.
4. Restart the General Survey software.

Select the **Use railroad terminology** option to use the following railway-specific terms if you are surveying a railway:

- **Slew** for **Go** when measuring your position relative to a string or when staking a station on a string.
- **Lift** for **V.Dist**

Select the **Use chainage distance terminology** option to use the term **Chainage** instead of **Station** for the distance along the road or tunnel.

Selecting the correct on-screen keyboard

Trimble Access and the tablet operating system both provide an on-screen keyboard. If you choose to use the Trimble keyboard then to avoid seeing two on-screen keyboards at the same time you must disable the Windows on screen keyboard by disabling tablet mode.

To use the Trimble Access keyboard:

1. In Trimble Access, from the main menu tap **Settings / Language**. In the Keyboard list select **Trimble**.
2. From the Windows desktop, swipe in from the right to access the **Action center**. Ensure **Tablet mode is Off**.
3. On a Windows 10 tablet, go to **Windows Settings**, tap **Devices / Typing** and turn off the **Show the touch keyboard when not in tablet mode and there’s no keyboard attached** setting.

To use the operating system keyboard:

1. In Trimble Access, from the main menu tap **Settings / Language**. In the Keyboard list select **Operating system**.
2. From the Windows desktop, swipe in from the right to access the **Action center**. Ensure **Tablet mode is On**.
Sound events

Sound events are prerecorded messages that notify you of an event or action that has occurred. They correspond with status line messages, and common error and warning messages.

Sound events are stored as .wav files. You can customize your own sound events by replacing or deleting the existing .wav files located in the Program Files\General Survey\Languages\[your language]\Sounds folder.

Tip - Use the Recorder application provided in Trimble controller except the CU to record your own sound events. Alternatively, transfer .wav files from the office computer to the controller using Data Transfer or Windows Mobile Device Center.

To turn all sound events on or off:
1. From the Trimble Access menu, tap Settings / Languages.
2. Select the Play sound events check box to turn on sound events, or clear it to turn them off.

Templates

Use templates to create a template of job properties to be used for a new job.

Creating a new template
1. From the Trimble Access menu, tap Settings / Templates.
2. Tap New.
 (To edit or review a template, highlight the template name and then tap Edit.)
3. Enter a template name.
4. Use the Copy from field to copy the job properties from the Last used job or an existing template.
5. Edit the properties for the template as required.
6. Tap Accept.

Importing a template from another job
1. From the Trimble Access menu, tap Settings / Templates.
2. Tap Import.
3. Select the job and then tap OK.
4. Enter the template name and then tap OK.

Tip - Use Rename or Delete to rename or delete a template.
Auxiliary GPS

Auxiliary GPS devices include GPS devices integrated into tablets or non-Trimble GPS devices connected via Bluetooth. Auxiliary GPS can be used during a conventional survey for GPS search, navigating to a point, and to display the position in the map.

Select an auxiliary GPS receiver. Choose from:

- *None*
- *Internal GPS* - for supported controllers
- *Custom* - set the controller port as appropriate

When using Bluetooth wireless technology to connect the controller to a *Custom* auxiliary GNSS receiver, from the Trimble Access menu, tap *Settings / Connect / Bluetooth* and then select the receiver in the *Connect to auxiliary GPS* field. For more information, see Bluetooth.
Conventional Survey Instruments

Conventional Instrument menu

If the controller is connected to a conventional instrument, the conventional Instrument menu is shown. Available options depend on the type of instrument that is connected.

Conventional instruments that can be connected to the controller running Trimble Access are:

- Trimble SX10 scanning total station
- Trimble VX Spatial Station
- Trimble S Series total stations: S5/S7/S9 and S3/S6/S8
- Trimble mechanical total stations: C3, C5, M1, M3
- Trimble 5600 total station
- Spectra Precision® FOCUS® 35 or FOCUS 30 total station
- Some third-party total stations

Note – If a GNSS receiver is also connected and you are performing an integrated survey, additional items appear in the Instrument menu. For more information, see GNSS Instrument Menu.

For more information on conventional instrument settings, see the following topics:

- Navigate to point
- Station setup details
- Electronic level
- EDM settings
- Laser pointer
- Turn to
- Joystick
- Target illumination
- Tracklight
- Instrument settings
- Instrument adjustment
- Survey Basic
- Instrument functions
Target tracking
Target controls
Autolock, FineLock, and Long Range FineLock technology
GPS search
Interrupted target measurement
Video
Data output
Radio settings
AT360 eBubble options
Connections
V10 panorama
Camera
Battery status

Navigate to point

If the controller is connected to a GNSS receiver, or you are using a controller with internal GPS, you can navigate to a point. Using GNSS / GPS, you can navigate to a point without a survey running.
If you are running a conventional survey, you can also navigate to a point. During the conventional survey, if the controller is connected to a GNSS receiver, or you are using a controller with internal GPS, you can continue navigating to a point if you lose lock. Tap the GNSS button and then navigate to the point.
When you start the Navigate to point function, it uses the settings in the last GNSS survey style that you used.

CAUTION - To ensure that internal GPS is available on a TSC3 or Trimble Slate controller, the GPS format must be set to NMEA (this is the default format). If the GPS format is set to SiRF Binary, you cannot use the internal GPS. To set the format press the Windows button to access the Start menu and then tap SatViewer. In the GPS tab, make sure that the NMEA option is selected.

Note –
- No configuration is required for the Geo7X/GeoXR controller or a Trimble tablet.
- When using a controller with internal GPS, a connected GNSS receiver is always used in preference to the internal GPS.
- If you are using a GNSS receiver that can track SBAS signals, when the radio link is down you can use SBAS positions instead of autonomous positions. To use SBAS positions, set the Satellite differential field in the survey style to SBAS.
Navigating to a point

1. Do one of the following:
 - From the map, select the point you want to navigate to. Then tap and hold on the map and select **Navigate to point** from the shortcut menu.
 - Select **Instrument / Navigate to point** from the main menu.
2. Fill in the other fields as required and then tap **Start**. The graphical display screen appears.
3. Use the arrow to navigate to the point, which is shown as a cross. When you are close to the point, the arrow disappears and a bull’s-eye symbol appears. A grid also appears and changes scale as you move closer to the target.
4. When you are on the point, the bull’s-eye symbol covers the cross.
5. Mark the point if required.

Tips
- Tap **Position** and then **Store** to store a point.
- If navigating with a Trimble controller that has an internal compass, you can use the internal compass to aid navigation. See **Compass** for further details.

Station setup details

To view the instrument type and current station setup information when the controller is connected to a conventional instrument, select **Instrument / Station setup details** from the main menu.
Alternatively, if you are using a mechanical instrument (not a servo or robotic instrument), tap the Instrument icon on the status bar.

Electronic level

The electronic level is available when connected to Trimble instruments.
The **Electronic level** screen appears automatically when you connect the controller and the instrument. To view the screen at any time, from the main menu, select **Instrument / Electronic level**.

If the instrument is a Trimble SX10 scanning total station:
- By default the **Electronic level** screen shows:
 - the tilt bubble. To disable this, clear the **Show bubble** check box.
 - the view through the plummet camera. To disable this view, clear the **Show video** check box.
 When the view through the plummet camera is shown, select the setting most suitable to the lighting conditions at your setup from the **White balance** field. For more information, see **White balance**.
- To configure options for capturing snapshots using the plummet camera, tap **Options**.
To manually capture an image using the plummet camera, tap \[\text{Capture} \] in the \textit{Electronic level} screen. If you enabled the \textit{Auto capture snapshot} option in the \textit{Options} screen, the image is automatically captured when you tap \textit{OK} in the \textit{Electronic level} screen.

Leveling an instrument electronically from startup

1. Plumb the instrument.
2. Use the tripod legs and the trivich bubble to roughly level the instrument.
3. Start the instrument.
4. If required, establish a connection between the controller and the instrument.
 - The \textit{Electronic level} screen appears.
 - If the instrument is not level enough, you may get a tilt error. Roughly level the instrument with the trivich circular bubble to bring the electronic level into range.
5. Turn the foot screws to center the bubbles for the sighting and trunnion axis.
6. To complete the leveling process, tap \textit{Accept}.

\textbf{Note} – \textit{When General Survey connects to a Trimble 5600 instrument, the compensator is not reinitialized if it was initialized within the last 2 hours and if the instrument level has not changed by more than 30 seconds.}

Leveling an instrument electronically during a survey

1. From the main menu, select \textit{Instrument / Electronic level}.
2. Turn the foot screws to center the bubbles for the sighting and trunnion axis.

On the Trimble C5, M3 and 3600 total station, the laser plummet is also activated while the \textit{Electronic level} screen is open.

\textbf{WARNING} - If accuracy is important, do not disable the compensator. If you do disable the compensator, horizontal and vertical angles in the instrument are not corrected for mis-levelment errors.

Adjusting the instrument

After leveling the instrument, tap \textit{Calib} to perform a compensator calibration. See \textit{Instrument adjustment}.

EDM settings

Select \textit{Instrument / EDM settings} to configure electronic distance meter settings.

Depending on the instrument that the controller is connected to, the following functions may be available:

- Direct Reflex
- Laser pointer
- **3R high power laser pointer**
- **Blink laser**
- **Prism standard deviation / DR standard deviation**
- **DR minimum and maximum distance**
- **Long range**
- **Laser alignment**
- **Weak signal**
- **10Hz tracking**

Direct Reflex

To enable or disable direct reflex (DR) measurement, select *Direct Reflex*.

When using DR with a Trimble total station, Target DR is dedicated for DR use. You must configure the prism constant and target height appropriately.

When you turn on DR, the software automatically switches to Target DR.

Tip—For fast access to configure the EDM settings, tap the instrument icon in the status bar and then tap and hold on the DR icon.

When you turn off DR, the software returns to the last used non-DR target. If the last used target has been deleted, the software uses Target 1.

Alternatively, select *Target DR* to enable DR. Select *Target 1* to disable DR and return the instrument to its previous state.

The software supports up to six preconfigured targets, but only one DR target. For more information, see *Target details*.

Laser pointer

To enable or disable the laser, select *Laser Pointer*. For more information, see *Laser pointer*.

To streamline the process of locating a prism in dark environments, enable the laser pointer in the EDM setting screen and enable the *LaserLock* check box in the *Target controls* screen. For more information, see *Autolock, FineLock, and Long Range FineLock technology*.

3R high power laser pointer

To enable or disable the high power laser pointer when using a Trimble S8 or S9 total station with the high power laser pointer option, select *3R high power laser pointer*. For more information, see *3R high power laser pointer*.

Blink laser

To blink the laser when storing a point measured with DR, select the number of times the laser will blink in the *Blink laser* field.
Prism standard deviation / DR standard deviation

To define the acceptable accuracy of a measurement, enter a Prism standard deviation or DR standard deviation value, depending on the mode the instrument is in. When measuring to diffuse targets the standard deviation is displayed on the status line until the standard deviation satisfies the defined value. Once the standard deviation is satisfied, the measurement is accepted. To accept the measurement before the standard deviation is satisfied, tap Enter while the standard deviation is displayed on the status line.

DR minimum and maximum distance

Enter a suitable DR minimum and maximum distance for your survey. Increasing the maximum distance will increase the time that it takes for a measurement to complete, even if the distance being measured is less than the specified maximum. The default maximum distance provides a balance between measurement time and range. Increase the maximum distance if you are working at longer ranges. To restrict the DR measurement range, enter a minimum and maximum distance to avoid a result from a distant or intermittent object.

Long range

To enable or disable long range mode on supported instruments, select Long range.

Use the long range mode when a strong instrument signal is required for measuring to targets more than one kilometer (about 0.6 miles) away.

Laser alignment

To take a measurement to where the laser is pointing, set the Laser alignment to Horizontal or Vertical (depending on the surface you are measuring to).

The laser pointer on a Trimble 5600 DR 200+ or DR 300+ instrument is not coaxial with the EDM. As a result, the location where the DR measurement is observed will not correspond to the location of the laser dot. To configure the software to measure to the laser dot, do the following:

1. Enable the laser pointer.
2. Select a laser alignment:
 - None DR measurement is observed below the laser dot.
 - Horizontal DR measurement is observed at the location of the laser dot provided that the measurement is on a horizontal surface.
 - Vertical DR measurement is observed at the location of the laser dot provided that the measurement is on a vertical surface.

The instrument will turn to the location of the laser dot and perform the measurement. Once the observation is completed, the instrument will turn the laser dot back to the observed point.
Weak signal

To accept measurements at a lower accuracy (that is, below the normal instrument specification), enable *Weak signal*.

10Hz tracking

To enable or disable 10Hz tracking select *10Hz tracking*.

Use 10Hz tracking when a faster update rate is required when using the TRK measuring method.

Note –
- Available for Trimble S8 or S9 total stations only.
- This option is only available if you are in both Autolock and Tracking mode. If you select DR or turn Autolock off when tracking, the software will default to normal tracking mode.
- Although tracking is faster the precisions will be null for the stored point.

Laser pointer

In a *Direct Reflex* survey, the laser pointer eliminates the need to look through the telescope when measuring DR points.

Note – When using a 5600 DR200+ instrument, the laser pointer is not coaxial with the telescope.

To turn on the laser:

1. To open the *Trimble Functions* screen, tap the Instrument icon in the status bar, or press and hold the Trimble key (if available) on the controller.
2. Tap the Laser pointer button.

Note – If DR is not yet enabled, turning on the laser pointer enables it. If you turn off the laser pointer, the instrument remains in DR mode. However, if you turn off DR mode, the laser is automatically turned off.

To streamline the process of locating a prism in dark environments, enable the laser pointer in the EDM setting screen and enable the *LaserLock* check box in the *Target controls* screen. For more information, see *Autolock*, *FineLock*, and *Long Range FineLock* technology.

To automatically measure to the laser pointer with a non-coaxial 5600 DR200+ or DR300+, configure the Laser alignment setting in *Instrument / EDM settings*. For more information, see the section on *Laser alignment* in EDM settings.

3R high power laser pointer

The Trimble S8 or S9 total station can be equipped with a 3R high power laser pointer.

Note –
- Even though the high-power laser pointer is not coaxial with the telescope, the instrument can automatically turn to measure to the laser pointer location. When you take a distance measurement and the 3R high-power laser pointer is on, a preliminary measurement is taken to determine the vertical angle to turn the instrument so that the distance is measured to
where the high-power laser pointer is pointing. The instrument automatically turns to that location and takes the measurement. The instrument then turns so that the high-power laser again points to the measured position. The preliminary measurement is not stored. This function does not occur during continuous topo.

- The calculation of the vertical angle to turn to assumes the horizontal distance to the preliminary measurement is similar to the distance to the high power laser pointer location. To measure to the high power laser point when it is near the upper or lower edge of an object, consider using face 1 to take measurements at the lower edge of an object, and face 2 to take measurements at the upper edge of an object so that the preliminary measurement does not overshoot the object you are measuring to.

- When using a Trimble S8 or S9 total station with the high power laser pointer in tunnel set out, after setting out the point, tap 3R Laser to enable the high power laser pointer and reposition the instrument to indicate the mark on the tunnel surface.

WARNING - The high power laser is a class 3R laser that emits laser radiation - do not stare into the beam or view directly with optical instruments.

Enabling or disabling the 3R high power laser pointer

1. To open the *Instrument functions* screen, tap the Instrument icon in the status bar.

 If the controller is connected to a Trimble S8 or S9 total station equipped with the high power laser pointer option, the second button on the first row in *Instrument functions* shows a 3R high power laser pointer icon. If the button shows a Tracklight, Video, or LR FineLock icon, the controller is connected to a total station that is not equipped with the high power laser pointer.

2. Do one of the following:

 - If *Instrument functions* shows 3R HP Laser On, the high power laser pointer is off. Tap the button to enable the high power laser pointer.
 - If *Instrument functions* shows 3R HP Laser Off, the high power laser pointer is already enabled. Tap the button to disable the high power laser pointer.

Turn to

If using a servo or robotic instrument, you can use the *Turn to* options to control how the instrument moves.

1. From the main menu, select Instrument / Turn to. Alternatively, tap the Instrument icon on the status bar and then tap the *Turn to* button on the *Instrument functions* screen.
2. Select an instrument control method. Then:

<table>
<thead>
<tr>
<th>To turn the instrument...</th>
<th>Enter...</th>
</tr>
</thead>
<tbody>
<tr>
<td>to a horizontal or vertical angle only</td>
<td>the angle in the Turn to field.</td>
</tr>
<tr>
<td>to a horizontal and vertical angle</td>
<td>the horizontal angle in the Turn to HA field, and the vertical angle in the Turn to VA field.</td>
</tr>
<tr>
<td>to a specified point</td>
<td>a point name in the Point name field.</td>
</tr>
<tr>
<td>by distance</td>
<td>the distance from your current position to the point where the instrument lost lock. Use this to aid the Search option to locate the target when you have lost lock.</td>
</tr>
</tbody>
</table>

3. Tap *Turn*. The instrument turns to the angle(s) or point you entered.

To turn the instrument horizontally 90° to the right or left, or 180° use the appropriate softkey at the bottom of the screen.

To make the instrument locate and lock on to the target, tap *Search*. The message "Searching..." appears and the instrument starts searching for the target.

For information on other methods, see:

- Joystick
- Preparing for a robotic survey
- Map

Joystick

If you are operating a robotic instrument at the remote end (target), use the *Joystick* softkey to turn the instrument towards the target when lock has been lost.

1. From the main menu, select *Instrument / Joystick*. Alternatively, tap the Instrument icon on the status bar and then tap *Joystick* button on the *Instrument functions* screen.

2. Tap an arrow on the screen or press the up, down, left, or right arrow keys to turn the instrument. The instrument turns in the direction indicated by the solid/filled arrow.

3. Depending on the robotic instrument being used, turn the instrument as described below:

 For any Trimble servo total station except the Trimble 5600:

<table>
<thead>
<tr>
<th>Tap and hold this arrow...</th>
<th>to turn the instrument...</th>
</tr>
</thead>
<tbody>
<tr>
<td>left or right</td>
<td>horizontally (left or right)</td>
</tr>
<tr>
<td>up or down</td>
<td>vertically (up or down)</td>
</tr>
<tr>
<td>any diagonal arrow</td>
<td>horizontally and vertically</td>
</tr>
</tbody>
</table>
Note
- To fine-tune the position of the instrument, tap the inner arrows. The inner arrows always turn at half of the minimum speed setting.
- How far the instrument turns depends on how long the button is held down.
- To change the direction tap the change direction button (←, →).
 - When the instrument icon is to the left of the prism icon, the instrument turns as if you are standing behind the instrument.
 - When the instrument icon is to the right of the prism icon, the instrument turns as if you are standing at the pole facing the instrument.
- To increase or decrease the turning speed, tap the left (decrease) or right (increase) speed arrows.

For a Trimble 5600:

<table>
<thead>
<tr>
<th>Tap this arrow...</th>
<th>to turn the instrument...</th>
</tr>
</thead>
<tbody>
<tr>
<td>first left or right</td>
<td>horizontally 12°</td>
</tr>
<tr>
<td>second left or right</td>
<td>horizontally 120°</td>
</tr>
<tr>
<td>first up or down</td>
<td>vertically 1°</td>
</tr>
<tr>
<td>second up or down</td>
<td>vertically 5°</td>
</tr>
</tbody>
</table>

Tap Esc or another arrow to stop the instrument from turning. The directional arrow becomes hollow. The instrument now points towards the target.

For a Leica TPS1100 series instrument:
Select the same direction to increase the instrument turning speed. The second directional arrow becomes solid. Select the same arrow again to decrease the speed.
Tap Esc or another arrow to stop the instrument from turning. The directional arrow becomes hollow. The instrument now points towards the target.

4. To make the instrument locate and lock on to the target, tap Search. The message “Searching...” appears and the instrument starts searching for the target.

When GPS Search is ready, a Search softkey is available. To perform a GPS-aided search, tap Search.

The search results appear in the status line as messages:
- Target Locked - indicates that the target has been located and tracking locked.
- No Target - indicates that the target was not located.

For information on other methods, see:
- Turn to
- Robotic instrument
- Map
Target illumination

When working in a dark environment using the Trimble SX10 scanning total station, use target illumination to more easily locate and see targets. Target illumination works best when using the primary camera.

To turn on or turn off target illumination, tap the instrument icon in the status bar and then tap TIL.

To set the illumination method:

1. Tap the instrument icon in the status bar.
2. Hold and then release the TIL button. The Target illumination screen appears.
3. Select the Enable target illumination check box.
4. In the Illumination field, select Blinking or Solid.

The illumination can be controlled when scanning or capturing a panorama using the primary camera by setting the Target illumination to Off or Solid in the Scanning or Panorama screen.

When capturing images that are not panoramas, for example Snapshot on measure, the target illumination captured in the image depends on the TIL status at the time the image is captured.

When scanning or capturing a panorama using the overview camera, if target illumination is enabled the software automatically disables target illumination for the duration of the scan.

Tracklight

Tip - For fast access to configure the Tracklight, tap the instrument icon in the status bar or press the Trimble key, and tap and hold on the Tracklight icon.

Turning on or turning off the tracklight

1. Tap the Instrument icon on the status bar.
2. Tap Tracklight in the Instrument functions screen.

Note –

- The Tracklight is not available when connected to an instrument equipped with a camera, a high power laser pointer or long range FineLock technology.
- When EDM power save is enabled on a Trimble 5600 DR Standard instrument, the Tracklight is not available.

Setting the speed of the guide-light

(Trimble S series, C5, and M3 total station only)

1. From the main menu, select Instrument / Tracklight.
2. Select the Enable tracklight check box.
3. From the drop down list in the Speed field, select:
 - Slow, Fast, or Auto for a Trimble S Series total station
• Slow, or Fast for a Trimble S3 total station
• Slow, Medium, or Fast for a Trimble C5 or M3 total station

Tip - When Auto is selected, the Tracklight flashes fast when the target is locked and slow if there is no target.

Setting the intensity of the guide-light

(Trimble 3600 or 5600 instrument only)

1. From the main menu, select *Instrument / Tracklight*.
2. Select the *Enable tracklight* check box.
3. From the drop down list in the *Intensity field*, select *Normal* or *High*.

Instrument settings

When connected to a Trimble instrument, select *Instrument / Instrument settings* from the main menu to access the *Instrument settings* dialog. Alternatively, tap and hold briefly on the instrument icon in the status bar and then release to enter *Instrument settings*.

Use this dialog to view and set specific controls on the instrument. Depending on the instrument that the controller is connected to, the following functions may be available:

• Instrument name
• Instrument type
• Instrument serial number
• Instrument firmware version
• Reticule illumination
• Target test
• Auto focus
• Face 2 backlight
• Dual face display
• Signal volume
• EDM power save
• Service information
• PIN and PUK

Instrument name, type, serial number and firmware version

If the instrument is a Trimble VX Spatial Station or Trimble S Series total station, tap *Name* to enter the instrument name. The instrument name is stored in the General Survey job file, and can be output to Export custom format files.

The instrument type, instrument serial number, and firmware version details are also stored in the General Survey job file and output to DC files and Custom ASCII files.
Reticule illumination

Use the Reticule illumination control to illuminate the cross hairs. This is useful when the cross hair is not easily visible, for example when in a tunnel.

Target test

The target test is used primarily in Survey Basic when measuring a distance that is to be displayed as a dead record.

If the instrument is moved more than 30 cm from where the last measurement was observed, the HA and VA are updated but the SD reverts to "?" to avoid mistaking the next target's distance for the previously measured target's distance.

Auto focus

The available auto focus settings depend on the connected instrument.

Trimble VX and S series auto focus settings

To enable auto focus, from the General Survey menu select Instrument / Instrument settings and select the Auto focus check box.

When auto focus is enabled, the instrument automatically focuses whenever it automatically turns to a known point.

The Auto focus check box is available for the following instruments:

- Trimble S7 or S9 total station equipped with Trimble VISION technology
- Auto focus-calibrated Trimble VX Spatial Station or Trimble S8 total station equipped with Trimble VISION technology and instrument firmware R11.0.76 or later
- Trimble S6 total station with instrument firmware R12 or later

Note –

- If heights are not known, the computed slope distance cannot be determined and the instrument will be focused based on the horizontal distance instead.
- New instruments are shipped with auto focus calibrated in the factory. When upgrading from an older version of the instrument firmware, you must first calibrate auto focus using the Adjustment / Autofocus calib. function on the instrument face 2 display.
- For the Trimble SX10 scanning total station, all cameras except the tele camera are fixed focus. The tele camera has auto focus or can be manually focused. See Manual focus.

Trimble C5 auto focus settings

To select the auto focus mode for the Trimble C5 total station, from the General Survey menu select Instrument / Instrument settings. In the Mode field in the Auto focus group box, select from:

- Continuous: The EDM continually measures, and the instrument continually focuses. If you use the manual focusing ring then auto focus stops until you press the AF key on the instrument keypad. Continuous mode consumes the instrument battery more quickly. It cannot be used when EDM power save is enabled.
Conventional Survey Instruments

- **Automatic – on prism**: The instrument only focuses on prisms, or when you press the AF key on the instrument keypad.
- **Key only**: The instrument only focuses when you press the AF key on the instrument keypad.

Enable the *On known distance* check box to automatically focus whenever you turn the instrument to a known point, for example during station setup plus, resection, stakeout or when measuring rounds or check shots.

Face 2 backlight

To enable the face 2 backlight when General Survey is running, select *Face 2 backlight.*

To enable the face 2 backlight when the Trimble CU is not attached to the instrument, press and hold (long press) the > key.

Signal volume

(Trimble 5600 only)

A returned signal sounds if a prism is detected. However, if you have activated EDM power save, you will not hear a signal.

Dual face display

(Trimble C5 total station only)

To control which face is turned on, select the appropriate option:

- **F1 only**: Turns on the face 1 display. Face 2 is always off.
- **F1 and F2**: Both face 1 and face 2 displays are always on.
- **Automatic**: Depending on the position of the telescope, either the face 1 or the face 2 display is on.

Both displays are automatically turned on when the electronic level is active. The default setting is *Automatic.*

EDM power save

(Trimble C5 total station, Trimble 5600 DR Standard, and 3600 only)

The power save mode turns off the EDM when the instrument is not measuring a distance. The instrument icon appears without the EDM indicator (*).

When the power save mode is off, the EDM is always turned on to receive a signal.

Note – *If EDM power save is enabled on a Trimble 5600 DR Standard instrument, the tracklight is not available.*

Service information

The Trimble VX Spatial Station or Trimble S Series total station should be serviced every 3000 hours or 13 months (whichever comes first). When the instrument is due for service, a service warning
message appears.
When this message appears, you can still use the instrument, but please contact your local Trimble reseller at your earliest convenience to organize servicing.
To check when the instrument is due for the next service, tap Instrument / Instrument settings / Service.

Note – Service information is available only when using firmware version R10.0.58 or later. Customers upgrading to R10.0.58 will not have service information available until after the instrument has been serviced at an authorized Trimble service provider. For more information, contact your local Trimble reseller.

PIN and PUK

PIN lock using Trimble Access
To enable PIN lock security on the Trimble total station, tap PIN and then enter and confirm the PIN. The PIN can be any 4-digit numeric value except 0000.
When the PIN function is enabled, the Unlock instrument screen appears when connecting to the instrument. Enter the PIN and then tap Accept.
When the PIN has been set, tap PUK and record the number. Use this number if you have forgotten your PIN. Ten incorrect attempts to unlock the instrument using a PIN results in the instrument being blocked. If this occurs, you are prompted for the PUK [Personal Unblocking Key] code to unblock the instrument.
If the instrument is locked and you don't know your PIN or PUK, contact your local Trimble reseller for help.
To change the PIN, tap Instrument / Instrument settings - PIN, enter the current PIN and then enter and confirm the new PIN.
To remove PIN lock security, tap Instrument / Instrument settings - PIN, enter the current PIN and then tap None. The software changes the PIN to 0000, which means that no PIN lock security is set.

PIN lock security using the instrument
PIN lock security can also be enabled using the [Security] option on the Face 2 display on the Trimble VX Spatial Station or Trimble S Series total station. To do this:
1. Select [Setup/Level / Setup / Security - Change PIN]
2. Enter the current PIN. Select [Done] if no PIN has been set.
3. Enter and confirm the new PIN. The PIN must be a 4 digit numeric value.
When enabled, select the [Unlock Instrument] option on the Face 2 display and enter the PIN to establish a connection.
When the PIN has been set, select [Get PUK] and record the number. Use this number if you have forgotten your PIN. Ten incorrect attempts to unlock the instrument using a PIN results in the instrument being blocked. If this occurs, you are prompted for the PUK [Personal Unblocking Key] code to unblock the instrument.
If the instrument is locked and you don't know your PIN or PUK, contact your local Trimble reseller for help.
To change the PIN, select [Setup/Level / Setup / Security - Change PIN], enter the current PIN and then enter and confirm the new PIN.

To remove PIN lock security, select [Setup/Level / Setup / Security - Change PIN] enter the current PIN and then enter and confirm 0000 as the new PIN.

Instrument adjustment

Select *Instrument / Adjust* from the main menu to complete the instrument adjustment procedures.

Note – Instrument / Adjust is not available during a survey. End the current survey to perform an instrument adjustment.

Trimble recommends carrying out instrument adjustment tests in the following situations:
- Whenever the instrument may have been roughly handled during transport.
- When the ambient temperature differs by more than 10°C (18°F) from the previous collimation test.
- Immediately prior to high precision angle measurements in one face.

Depending on the instrument, you may also be able to perform these tests through the face 2 menu display. For more information, refer to the documentation for your instrument.

Instructions for performing the tests using General Survey running on the controller are described below.

This topic covers:
- Adjusting a Trimble total station
- Adjusting a FOCUS 30/35 total station

Adjusting a Trimble total station

Depending on the instrument that the controller is connected to, the following procedures may be available:
- Compensator calibration
- Collimation and trunnion axis tilt
- Autolock collimation
- Telecamera collimation
- EDM constant

Compensator calibration

Trimble recommends that you calibrate the compensator periodically, especially before you take precise measurements.

If you are using a Trimble CU controller, it must be unattached.
Calibrating the compensator in a Trimble total station

1. Make sure that the instrument is accurately leveled and that the compensator is enabled.
2. Select Instrument / Adjust / Compensator calibration.
3. Tap Next to begin the calibration.

 During calibration the instrument slowly rotates through 360°. If the calibration is:
 - successful, the message Calibration complete appears. Tap OK to accept the calibration.
 - unsuccessful, the message Calibration failed appears. Tap Esc, check the instrument setup, and re-level the instrument. Repeat the calibration. If it still fails, contact your Trimble service provider.

Collimation and trunnion axis tilt

On a Trimble total station, you must perform the HA VA collimation and the trunnion axis tilt adjustments together.

See:
- Collimation and trunnion axis tilt adjustment for a robotic Trimble total station
- Collimation and trunnion axis tilt adjustment for a mechanical Trimble total station

Collimation and trunnion axis tilt adjustment for a robotic Trimble total station

1. Set up the instrument on a stable surface.
 Position the instrument as follows:
 - For HA VA collimation, the instrument must be at least 100 m from the target and the angle to the target must be less than 4°30' (5 gon) from the horizontal plane.
 - For trunnion axis tilt, the angle to the target must be at least 13°30' (15 gon) from the horizontal plane (for the 5600) or from the VA measured during collimation.
2. Select Instrument / Adjust / Collimation & Trunnion axis tilt.
 Current adjustment values for the instrument are shown.
3. Tap Next to begin the adjustment.
4. Aim at the target and take the collimation measurement.

 Note – Do not use Autolock during collimation or trunnion axis tilt tests.

 You must take a minimum of one observation on each face. If you take more than one observation, complete all observations on face 1 first. Between each observation, turn the instrument away and then re-aim.
5. To change face, tap Chg face and observe the same number of observations on face 2 as you observed on face 1.
6. When the number of observations is the same for both faces, tap Continue.
7. Aim at the target and take the trunnion axis tilt measurement in the same way you took the collimation measurements.
 The current values and the new instrument values are shown.
8. Tap Accept to accept the new values. Tap Esc to reject the new values and continue using the current values.
Final collimation values must be within tolerance of standard values. If not, the instrument needs to be adjusted mechanically. For more information, contact your local Trimble service provider.

Collimation and trunnion axis tilt adjustment for a mechanical Trimble total station

Supported mechanical total stations are the C5 or M3 total station.

1. Set up the instrument on a stable surface.
 - Position the instrument as follows:
 - For HA VA collimation, the instrument must be at least 100 m from the target and the angle to the target must be less than 3° (3.33 gon) from the horizontal plane.
 - For trunnion axis tilt, the angle to the target must be at least 30° (33.33 gon) from the horizontal plane (for the 5600) or from the VA measured during collimation.

2. Select **Instrument / Adjust**.
 - Current adjustment values for the instrument are shown.

3. Follow the prompts to begin the adjustment.

4. Observe the collimation target on face 1.

5. Manually change to face 2 by flipping over the eye piece and then turning the instrument 180° and observe the collimation target on face 2.
 - The collimation results are displayed:
 - Tap **Store** to save the new horizontal and vertical collimation settings.
 - Tap **Trun.** to continue on to the trunnion axis tilt adjustment. If carrying out the trunnion axis adjustment continue with the following steps.

6. Observe the trunnion axis target on face 2.

7. Observe the trunnion axis target on face 1.

8. Repeat the observations to the collimation and the trunnion axis targets at least two more times. A minimum of three sets of observations are required to complete the trunnion axis adjustment.
 - **Note** – **Observations made must agree within a 10° (0.003 gon) range.**

9. Tap **Store** to save the collimation and trunnion axis adjustments and exit the adjustment process.

Final collimation values must be within tolerance of standard values. If not, the instrument needs to be adjusted mechanically. For more information, contact your local Trimble service provider.

Autolock collimation

This option is available only for instruments with **Autolock**.

Note – Autolock collimation should be performed after the HA VA Collimation adjustment, if available, has been completed.

Set up the instrument on a stable surface and follow the prompts. Press the keys lightly to avoid bumping the instrument. Ensure that there are no obstructions between the instrument and the target, which should be at least 100 m apart.
Telecamera collimation
This option is available only for the Trimble SX10 scanning total station.
Set up the instrument on a stable surface and follow the prompts. Ensure that there are no obstructions between the instrument and the target.
Tap twice to zoom to the maximum zoom level. Aim to the target and tap Measure. Repeat for face 2. Tap Accept to accept the new collimation values.

EDM constant
This option is available only for compatible Trimble total stations.
1. Select Instrument / Adjust / EDM constant.
2. Tap Next and then enter an appropriate EDM constant. The available range is -9.99 mm to +9.99 mm.
3. Tap Store.

Adjusting a FOCUS 30/35 total station
When connected to a Spectra Precision FOCUS 30/35 total station, the following procedures are available:
- Compensator calibration
- Collimation error
- Trunnion axis tilt correction
- Autolock collimation

Compensator calibration
1. Make sure that the instrument is accurately leveled and that the compensator is enabled.
2. Select Instrument / Adjust / Compensator calibration.
3. Tap Next to begin the calibration.
 During calibration the instrument slowly rotates through 360°. If the calibration is:
 - successful, the message Completed appears. Tap Enter to accept the calibration.
 - unsuccessful, the message Calibration failed appears. Tap Esc, check the instrument setup, and re-level the instrument. Repeat the calibration. If it still fails, contact your Trimble service provider.

Collimation error
1. Set up the instrument on a stable surface.
 Position the instrument so that the angle to the point is less than 4°30' (5 gon) from the horizontal plane.
2. Select Instrument / Adjust / Collimation.
 Current adjustment values for the instrument are shown.
3. Tap Next to begin the adjustment.
4. Aim at the point and take the collimation measurement.
 Note – Do not use Autolock during collimation or trunnion axis tilt tests.
 You must take a minimum of one observation on each face. If you take more than one
 observation, complete all observations on face 1 first. Between each observation, turn the
 instrument away and then re-aim.

5. To change face, tap *Chg face* and observe the same number of observations on face 2 as you
 observed on face 1.

6. When the number of observations is the same for both faces, tap *Results*.
 The current values and the new instrument values are shown.

7. Tap *Accept* to accept the new values. Tap *Cancel* to reject the new values and continue using
 the current values.

Trunnion axis tilt correction

1. Set up the instrument on a stable surface.
 Position the instrument so that the angle to the point is less than 13°30’ (15 gon) from the
 horizontal plane.

2. Select *Instrument / Adjust / Collimation*.
 Current adjustment values for the instrument are shown.

3. Tap *Next* to begin the adjustment.

4. Aim at the point and take the trunnion axis tilt measurement.
 Note – Do not use Autolock during collimation or trunnion axis tilt tests.
 You must take a minimum of one observation on each face. If you take more than one
 observation, complete all observations on face 1 first. Between each observation, turn the
 instrument away and then re-aim.

5. To change face, tap *Chg face* and observe the same number of observations on face 2 as you
 observed on face 1.

6. When the number of observations is the same for both faces, tap *Results*.
 The current values and the new instrument values are shown.

7. Tap *Accept* to accept the new values. Tap *Cancel* to reject the new values and continue using
 the current values.

Autolock collimation

This option is available only for instruments with *Autolock*.
**Note – Autolock collimation should be performed after the HA VA Collimation adjustment, if
available, has been completed.**
Set up the instrument on a stable surface and follow the prompts. Sight to a target on face 1 with a
slope distance between 20 m and 300 m and within 4°30’ (5 gon) of horizontal.

Survey Basic

Survey Basic is available when you connect a controller to a Trimble instrument.
You can use it as follows:

- If a General Survey job was created with a station setup, then Survey Basic can display raw data, and coordinates based on the station setup in the job.
- If a current station setup does not exist, you can:
 - Make simple distance or angular checks.
 - Define the Northing and Easting coordinates for the instrument point in Survey Basic, set the horizontal circle and then display coordinates for points observed using Survey Basic.
 - Key in the elevation for the instrument point and then display the elevation for points observed using Survey Basic.
 - Observe to a point with a known reference elevation to compute the instrument elevation and then display the elevation for points observed using Survey Basic.

Tip - To quickly access Survey Basic, from the Trimble functions screen, press 0.

Note – *You cannot store measurements in Survey Basic.*

Survey Basic functions

The following table shows Survey Basic functions.

<table>
<thead>
<tr>
<th>Tap the ...</th>
<th>to ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument icon on the status bar</td>
<td>access the Instrument functions screen</td>
</tr>
<tr>
<td>Target icon</td>
<td>set or modify the target height</td>
</tr>
<tr>
<td>Zero softkey</td>
<td>set the instrument horizontal circle to 0</td>
</tr>
<tr>
<td>Set softkey</td>
<td>set the horizontal circle</td>
</tr>
<tr>
<td></td>
<td>set the target height</td>
</tr>
<tr>
<td></td>
<td>set the reference elevation, and compute the instrument elevation</td>
</tr>
<tr>
<td></td>
<td>set the instrument point coordinates, and instrument elevation</td>
</tr>
<tr>
<td></td>
<td>set the instrument height</td>
</tr>
<tr>
<td>Options softkey</td>
<td>modify the correction values used in Survey Basic</td>
</tr>
<tr>
<td>Clear softkey</td>
<td>reset the angles back to live and clear the slope distance after a measurement</td>
</tr>
<tr>
<td>Display view button</td>
<td>switch the display between HA, VA, SD and HA, HD, VD</td>
</tr>
</tbody>
</table>

Press the ... to ...

<table>
<thead>
<tr>
<th>Press the ...</th>
<th>to ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter key</td>
<td>measure a distance and fix the horizontal and vertical angles</td>
</tr>
</tbody>
</table>

Note – *When a survey is running you cannot change:*

- the instrument’s horizontal circle
- the instrument point coordinates
- correction values

Computing the instrument point elevation from a known reference point using Survey Basic

1. Ensure that a current station setup does not exist and then start Survey Basic.
2. Tap Set and then enter the Target height, Reference elevation, and Instrument height.
3. If required, enter the Horizontal angle and instrument point Northing and Easting.
4. To measure the reference point, tap Measure. The instrument point Elevation is computed.
5. To return to Survey Basic, tap Accept.

To change the view on the data displayed, tap the arrow button.

Note –
- If the target height or instrument height is null, the General Survey software cannot calculate a VD.
- If target height and instrument height are both null, the General Survey software assumes zero for both and can compute the VD, but cannot compute the Elevation.
- If a station setup is computed using Survey Basic, a scale only projection of 1.0 is used to calculate coordinates.

Using Survey Basic to compute the inverse distance between two measurements

Inverse provides the ability to display inverse calculations between two measurements. You can configure inverse to compute Radial inverses from a single measurement to one or more other measurements, or Sequential inverses between successive measurements.

1. From the Survey Basic front screen tap the up arrow and then select Inverse.
2. Set the Method to either Radial or Sequential.
3. Enter a target height, if required.
4. Tap Meas 1 to measure to the first point.
5. Enter a target height, if required.
6. Tap Meas 2 to measure to the next point.
7. The inverse results are displayed.
 - Tap Continue to measure subsequent points. The process then continues from step 4.
 - Tap Reset to return to step 1.
8. Tap Esc to return to Survey Basic.

Note –
- If there is a survey running, the azimuth for each computed inverse will be displayed, and you will be able to select whether to display Grid, Ground or Ellipsoidal distances using the Options softkey, with the computations based on the settings in the current job.
- Without a survey running, and therefore no orientation, the azimuth is not available for computed inverses and all computations are based on simple cartesian computations with a scale factor of 1.0.
- Tap Options to configure the format of the grade display.
Instrument functions

To access the Instrument functions screen, do one of the following:

- tap the instrument icon on the controller screen
- select Instrument / Instrument functions from the General Survey main menu
- press and hold the Trimble key

The Instrument functions screen is available for conventional total stations. Use it to control commonly used instrument functions, and to change instrument settings. Depending on the instrument that the controller is connected to, the following functions may be available:

- STD (EDM Standard mode)
- FSTD (EDM Fast Standard mode)
- TRK (EDM Tracking mode)
- Tracklight
- Target illumination
- Video
- Laser (Laser pointer for DR instruments)
- 3R High Power Laser Pointer (Trimble S8 or S9 total station equipped with HP laser pointer only)
- DR (Direct Reflex) mode
- Electronic level
- Joystick
- Turn to
- Change face
- Survey Basic
- Autolock
- FineLock (Trimble S8 or S9 total station equipped with FineLock technology only)
- Long Range FineLock (Trimble S8 or S9 total station equipped with LR FineLock technology only)
- Search
- Start Robotic
- Connections
- Disconnect

Instrument function icons

Some buttons within Instrument Functions have different states. If the button is highlighted in yellow, the function is enabled.

Disconnect

The Disconnect function is available when the controller is connected to a Trimble VX Spatial Station or Trimble S Series total station with no current station setup. To reconnect to the instrument, select Station setup or tap the auto connect icon.
in the status bar to restart auto connect. Auto connect is temporarily disabled when you use Disconnect.

Once you begin a survey, this option changes to End survey.

Note – To access the Disconnect function when connected to a Trimble SX10 scanning total station, see Connections.

Instrument function shortcuts to the Instrument menu

Shortcuts to certain Instrument menu functions are available from Instrument functions. In the Instrument functions screen, tap and hold on the DR, Laser, Tracklight, Autolock, Search, Connections and Start Robotic icons to quickly access their Instrument menu configuration screens.

Geodimeter users

Former Geodimeter users can enter a Geodimeter program number in the Instrument functions screen to launch the corresponding General Survey function. For example, Geodimeter program 26 (Compute join) is the same as the Trimble function Compute inverse.

See GDM CU Programs for details.

Target tracking

Target tracking is available when connected to some Trimble instruments or Leica TPS1100/TPS1200 instruments. This topic describes:

- Target tracking with the Trimble VX Spatial Station or Trimble S Series total station
- Remote Measuring Target (RMT) ID - Target tracking with Trimble 5600
- Leica search method for the Leica TPS1100 or TPS1200

Target tracking with the Trimble VX Spatial Station or Trimble S Series total station

You can configure the software to use an Active Target ID if you are using a Trimble VX Spatial Station or Trimble S Series total station with search capabilities and one of the following:

- Trimble AT360 Active Track 360 target
- Trimble MT1000 MultiTrack target
- Trimble VX/S Series 360° prism
- Custom prism

Ensure that the correct prism type and mode is selected in the target form. This will ensure that the appropriate correction values are applied to the slope distance and vertical angle for geocentric offset and prism constant.

See also:

- Target details
- Target controls
Trimble Active Track 360 target

The Trimble Active Track 360 (AT360) is a reflective foil target designed for use as an active tracker target. The AT360 includes a tilt sensor that enables eBubble support when connected to the controller with Bluetooth. The eBubble is used to check that the target is level. The tilt angle and tilt distance is stored with each observation.

For more information on connecting the AT360 to your controller, see Bluetooth.

To enable active tracking with the AT360:

1. Tap the target icon on the status bar.
2. Select the Target height or Prism constant field to open the Target screen.
3. Set the Prism type to Active Track 360.
4. Set the Tracking mode to Active.
5. Set the Target ID to match the identification number in the Target ID on the robotic rover.

When connected to the AT360 using Bluetooth, changing the Target ID in the General Survey software automatically updates the target ID setting on the AT360 once you tap Accept in the Target screen. Likewise if you change the target ID on the AT360 and the current target is an AT360, then the Target ID is automatically updated on the controller.

Manual mode can be used if the battery in the AT360 needs charging and you do not have a replacement battery available. When using the AT360 in manual mode, Autolock is disabled and you must manually aim the instrument at the target.

Note – When you enable Autolock and the current prism is the Active Track 360 then the software automatically switches the tracking mode to Active if it is in manual mode.

Trimble MultiTrack target

When using the Trimble MultiTrack target, the Tracking mode can be set to:

- Passive
- Active
- Semi-active

The MultiTrack target should be used within the vertical angle tolerances shown in the following table:

<table>
<thead>
<tr>
<th>Tracking mode</th>
<th>Vertical range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>+/- 15° from horizontal</td>
</tr>
<tr>
<td>Passive</td>
<td>+/- 30° from horizontal</td>
</tr>
</tbody>
</table>

Using the MultiTrack target outside these tolerances may degrade the accuracy of the measurement.

Note – If you use a Trimble VX Spatial Station or Trimble S Series total station with the Trimble MultiTrack target, you must upgrade the instrument to firmware version R7.0.35 or later. The Trimble VX Spatial Station or Trimble S Series total station firmware is available on www.trimble.com.
Tracking mode - Passive
If you do not operate in a reflective environment, set the Tracking mode to Passive.
1. Tap the target icon on the status bar.
2. Select the Target height or Prism constant field to open the Target form.
3. Set the Prism type to VX/S Series MultiTrack.
4. Set the Tracking mode to Passive.

Tracking mode - Active
If you operate in a highly reflective environment, or on a site with many prisms, set the Tracking mode to Active to ensure that you maintain constant lock to the correct target.
1. Tap the target icon on the status bar.
2. Select the Target height or Prism constant field to open the Target form.
3. Set the Prism type to VX/S Series MultiTrack.
4. Set the Tracking mode to Active.
5. Set the Target ID to match the identification number in the Target ID on the robotic rover.

Tracking mode - Semi-active
If you operate in a reflective environment, and require precise elevations, set the Tracking mode to Semi-active to ensure that you maintain constant lock to the correct target.
1. Tap the target icon on the status bar.
2. Select the Target height or Prism constant field to open the Target form.
3. Set the Prism type to VX/S Series MultiTrack.
4. Set the Tracking mode to Semi-active.
5. Set the Target ID to match the identification number in the Target ID on the robotic rover.

When the Tracking mode is set to Semi-active, the Target ID is used to track the prism, and then automatically switches to passive tracking mode when taking a standard measurement. This results in more precise vertical angle measurements.

When passive tracking is used when measuring, you must be aware that there is a risk of nearby reflective surfaces interfering with the measurement.

Trimble VX/S Series 360° prism or a custom prism
When using the Trimble VX/S Series 360° prism or a custom prism, the Target ID can be set to:
- Off - the ID is not checked.
- Search - check the ID when a search is initiated.
- Search and measure - check the ID when a search is initiated, and when a measurement is initiated.
- Always - the ID is constantly being checked by the instrument.

The Target ID has two "on" modes; on for 60 seconds, and on continuously. When Check target ID is set to Always, you must set the Target ID on the pole to "on continuously".

The target ID must be carefully aimed towards the instrument at all times.
For more information on how to configure the target ID on the Trimble pole, refer to the documentation for your instrument.

Note – Target ID can be used for rounds observations. When you do this, make sure that each target in the rounds list can have a different target ID. These settings are retained for each individual target until the rounds observations are completed.

Check the target ID - Search

If you operate in an environment with few reflective surfaces, but you want to ensure that if you do a search you will lock to the correct target, set Check target ID to Search.

1. Tap the target icon on the status bar.
2. Select the Target height or Prism constant field to open the Target form.
3. Set the Prism type to VX/S Series 360°.
4. Set the Check target ID to Search.
5. Set the Target ID to match the identification number in the Target ID on the Trimble Standard Rod.

When the Check target ID is set to Search, the Target ID is checked after a search is made to ensure that you are locked onto the correct target. If not, the General Survey software warns you and you can perform a new search for the correct target ID.

If you enable Snap to target and the instrument automatically detects the target, the instrument does not perform a search or check the Target ID.

The target ID must be carefully aimed towards the instrument when performing a search.

Check the target ID - Search and measure

If you operate in an environment with few reflective surfaces, but you want additional assurance if you do a search or when you measure that you will lock to the correct target, set Check target ID to Search and measure.

1. Tap the target icon on the status bar.
2. Select the Target height or Prism constant field to open the Target form.
3. Set the Prism type to VX/S Series 360°.
4. Set the Check target ID to Search and measure.
5. Set the Target ID to match the identification number set in the Target ID on the Trimble Standard Rod.

When the Check target ID is set to Search and measure, the Target is checked again before a measurement is made to ensure that the instrument is still locked onto the correct target. If not, the General Survey software warns you and you can then perform a new search for the correct target ID.

The target ID must be carefully aimed towards the instrument when taking a measurement.
Check the target ID - Always

If you operate in a reflective environment, and require precise elevations set Check target ID to Always to ensure that you maintain constant lock to the correct target.

1. Tap the target icon on the status bar.
2. Select the Target height or Prism constant field to open the Target form.
3. Set the Prism type to VX/S Series 360°.
4. Set the Check target ID to Always.
5. Set the Target ID to match the identification number in the Target ID on the robotic rover.

When the Check target ID is set to Always, the Target ID is used to actively maintain horizontal lock. The prism is used to maintain the vertical lock.

When passive tracking is used to maintain vertical lock to the prism, you must be aware that there is a risk of nearby reflective surfaces interfering with the vertical tracking.

Remote Measuring Target (RMT) ID - Target tracking with Trimble 5600

When you work on a site with multiple RMTs, configure the RMT channel ID to lock onto a specific RMT target.

Note – This is only available on supported instruments.

1. Tap the target icon on the status bar.
2. Select the Target ID field to open the Target screen.
3. Set the RTM ID in the General Survey software to match the ID set in the RMT. For more information, refer to the Trimble 5600 Series User Guide.

Tip - To lock to RMTs that do not support RMT ID, set the RMT ID to 4.

Leica search method for the Leica TPS1100 or TPS1200

If you operate a Leica TPS1100 or TPS1200 instrument that supports Power search, you can configure the search method to use for performing a search.

The search methods available are:

- Spiral
- Power search

Use the method that best suits the environment you work in. For more information, refer to the instrument manufacturer's documentation.

Leica ATR mode

If you operate a Leica TPS1200 instrument that supports Low visibility and S-Range ATR modes, you can configure the ATR method used.
The available ATR modes are:

- Normal
- Low visibility on
- Low visibility always on
- S-Range on
- S-Range always on

Use the method that best suits the environment you work in. For more information, refer to the instrument manufacturer's documentation.

Target controls

Once you have defined the target in the *Target* screen, use the *Target controls* screen to configure how to track, lock, and measure to the target.

For more information, see:

- Autolock, FineLock, and Long Range FineLock technology
- GPS search
- Interrupted target measurement

Autolock, FineLock, and Long Range FineLock technology

Configure *Autolock*, *FineLock*, and *Long Range FineLock* settings in the *Target controls* screen.

If Autolock is available on the instrument, use it to lock on to and track a remote target.

FineLock and Long Range FineLock technology provide better performance when measuring to static targets when there are two prisms close together. You can use FineLock and Long Range FineLock technology to lock to a target, but not to track or search for a target.

With an S8 or S9 total station equipped with FineLock technology, you can use FineLock mode when measuring to a prism that is 20 m - 700 m away.

To measure to a prism that is 5 m to 60 m away, enable *Using FineLock lens aperture* and then fit the lens aperture accessory to the instrument.

With an S8 or S9 total station equipped with Long Range FineLock technology, you can use Long Range FineLock mode when measuring to a prism that is 250 m - 2500 m away.

Note – *The separation between targets should not be less than 13’ 45” (4 mrad).*

When using an S8 or S9 total station equipped with FineLock technology, you can configure the Autolock button in Instrument functions to enable and disable Autolock, or to enable and disable FineLock technology.
Enabling or disabling Autolock

1. To open the Instrument functions screen, tap the Instrument icon in the status bar.
2. You can configure the second button on the third row in Instrument functions to be either an Autolock or a FineLock button.
 - If the button shows FineLock, it is configured as a FineLock button. To change it to Autolock, tap and hold briefly on the button. Once you release the button, the Target controls dialog appears. Set the Target lock to Autolock and then tap Accept.
 - If the button shows Autolock, it is already configured as an Autolock button.
3. Do one of the following:
 - If the button is not highlighted yellow, tap Autolock to enable Autolock.
 - If the button is highlighted yellow, tap Autolock to disable Autolock.

A search is automatically performed if a measurement is initiated when Autolock is enabled but the instrument is not locked to the target.

When GPS search is ready, a GPS-aided search is performed instead of a standard search.

To perform a standard search, pause GPS Search, or select Search available from the Joystick screen.

Select Interrupted target measurement and then enter an Interrupt timeout value if the measurement is likely to be interrupted, for example, when measuring in traffic.

Tip - For fast access to configure the Autolock and search settings, tap the instrument icon in the status bar or press the Trimble key, and tap and hold on the Search icon.

Note – Do not use Autolock during the collimation or Trunnion axis tilt tests. For more information, see Instrument adjustment.

Configuring additional Autolock controls

Snap to target, Autosearch, LaserLock, and Predictive tracking time provide additional Autolock controls, they are not available with FineLock or Long Range FineLock technology. To configure these settings, tap the Instrument icon in the status bar to view the Instrument functions screen and then tap and hold on the Autolock button. The Target controls screen appears, showing the following settings:

Autolock method

Select Snap to target to automatically lock on to a remote target if one is detected. This function was previously called Advanced lock. If you do not want to automatically lock onto a target, set the Autolock method to Snap disabled.

Autosearch

Select Autosearch to automatically perform a horizontal search when lock is lost to a remote target.

LaserLock

The LaserLock method streamlines the process of locating a prism in dark environments by enabling the laser pointer and then using Autolock to lock to the target when measuring. When the LaserLock checkbox is enabled, measuring to the prism automatically disables the laser and switches Autolock
on. When the measurement is complete Autolock is switched off, and the laser is switched back on ready to help locate the next prism.

Predictive tracking time

This feature enables you to pass behind a temporary obstruction and have the instrument continue to turn, based upon the target's horizontal trajectory, when lock to the prism is lost.

If the trajectory is consistent and the prism re-appears from behind the obstruction within the defined time interval, the instrument will be aimed directly at the prism and lock is automatically regained.

After the specified time interval, the General Survey software reports that the target is lost and then takes corrective actions based on the current settings.

The instrument turns to where the target was last seen and then acts as follows:

<table>
<thead>
<tr>
<th>If Autosearch is ...</th>
<th>and Snap to target is ENABLED, the instrument</th>
<th>and Snap to target is DISABLED, the instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
<td>Locks on to any target in the field of view. If there is no target, a search starts based on your search window settings.</td>
<td>Ignores any visible targets and starts a search based on your search window settings</td>
</tr>
<tr>
<td>Off</td>
<td>Locks on to any target in the field of view or waits until a target comes into the field of view and then locks onto it.</td>
<td>Ignores any targets in the field of view and does not start any search until you prompt it to do so.</td>
</tr>
</tbody>
</table>

Note — The General Survey software defaults are **Snap to target** ENABLED and **Autosearch** OFF.

You can configure the Predictive tracking time as follows:

- For standard robotic usage, Trimble recommends the default setting (1s).
 This enables you to pass behind anything small blocking the line of sight between the instrument and the target (for example, trees, electrical posts, or vehicles) and then automatically regain lock.

- In environments with a number of reflective objects, you could set the predictive tracking time to 0s. For optimal performance, use this setting with Snap to target DISABLED.
 With these settings, you are immediately informed if the line of sight to the correct target is obstructed. You can then ensure that you regain lock to the correct target.

- In environments where your target may be blocked for a few seconds at a time, you can use settings of 2s or 3s.
 This enables you to pass behind larger objects blocking the line of sight between the instrument and the target (for example, small buildings) and then automatically regain lock.

If the instrument fails to regain lock onto the moving target, it returns to the location where it first lost lock and the predictive tracking began.
To change the Predictive tracking time:

1. Do one of the following:
 - From the main menu, select Instrument / Target controls.
 - From the Instrument functions form, tap and hold briefly on the Autolock or Search icon. When you release, the Target controls dialog appears.
2. Select the required time from the Predictive tracking time list.

Enabling or disabling FineLock technology

1. To open the Instrument functions screen, tap the Instrument icon in the status bar.
2. You can configure the second button on the third row in Instrument functions to be either an Autolock or a FineLock button.
 - If the button shows Autolock, it is configured as an Autolock button. To change it to FineLock, tap and hold briefly on the button. Once you release the button, the Target controls dialog appears. Set the Target lock to FineLock and then tap Accept.
 - If the button shows FineLock, it is already configured as a FineLock button.
3. Do one of the following:
 - If the button is not highlighted yellow, tap FineLock to enable FineLock.
 - If the button is highlighted yellow, tap FineLock to disable FineLock.

Using the FineLock lens aperture

CAUTION - When measuring less than 20 m, you must enable Using FineLock lens aperture and then fit the lens aperture accessory to the instrument.

1. Use the instructions above to configure FineLock technology.
2. Open the Instrument functions screen and then tap and hold briefly on the FineLock button. When you release it, the Target controls dialog appears. Enable the Using FineLock lens aperture check box and then tap Accept.
3. Fit the FineLock lens aperture accessory to the instrument.
 You can now perform FineLock measurements to prisms less than 20 m away.

Note – The FineLock lens aperture accessory should only be used on an S9 total station or an S8 total station with firmware version R12.2 or later.

Enabling or disabling Long Range FineLock technology

1. To open the Instrument functions screen, tap the Instrument icon in the status bar.
 - If the controller is connected to an S8 or S9 total station equipped with Long Range FineLock technology, the second button on the first row in Instrument functions is the Long Range FineLock button.
 - If the button shows a Tracklight, Video, or High Power Laser Pointer icon, the controller is connected to a total station that is not equipped with Long Range FineLock technology.
2. Do one of the following:
 - If the LR FineLock button is not highlighted yellow, tap LR FineLock to enable long range FineLock.
 - If the LR FineLock button is highlighted yellow, tap LR FineLock to disable long range FineLock.

Notes on FineLock and Long Range FineLock

- FineLock technology is available only on a Trimble S8 or S9 total station equipped with FineLock technology.
- Long Range FineLock technology is available only on a Trimble S8 or S9 total station equipped with Long Range FineLock technology.

The Long Range FineLock hardware is not coaxial with the telescope.

To eliminate the vertical errors associated with non-coaxial Long Range FineLock hardware, you must observe all observations to points on both face 1 and face 2.

- You can use FineLock technology only to prisms 20 m - 700 m away.

 - If you use FineLock technology and you measure a distance of less than 20 m, General Survey detects that FineLock should not be used, the measurement fails, and the message *Target too close for FineLock* appears. You must disable FineLock technology when measuring less than 20 m.

 - If you use FineLock technology to a target less than 20 m away, and a distance is not measured, General Survey uses FineLock technology because it cannot detect that it should not be used.

 - Measurements taken with FineLock technology under 20 m are unreliable - do not use them.

- You can use Long Range FineLock technology only to prisms 250 m - 2500 m away.

 - If you use Long Range FineLock technology to measure a distance of less than 250 m, General Survey detects that Long Range FineLock technology should not be used, the measurement fails, and the message *Target too close for Long Range FineLock* appears. Use FineLock technology when measuring less than 250 m.

 - If you use Long Range FineLock technology to a target less than 250 m away, and a distance is not measured, General Survey uses Long Range FineLock technology because it cannot detect that it should not be used.

 - Measurements taken with Long Range FineLock technology under 250 m are unreliable - do not use them.

- FineLock and Long Range FineLock technology always take precedence over TRK, DR, or Autolock modes - you cannot use them at the same time.

 - If you enable FineLock or Long Range FineLock technology along with TRK, the observation is measured with STD mode.

 - If you enable FineLock or Long Range FineLock technology along with DR, the observation is measured with STD mode.
• If you enable FineLock or Long Range FineLock technology when Autolock is already enabled, Autolock is automatically disabled.
 If there are two prisms close together, and Autolock was enabled before setting FineLock or Long Range FineLock technology, check the pointing to the prism because Autolock may lock to the other prism before FineLock or Long Range FineLock is enabled.
• You can use FineLock and Long Range FineLock technology with *Averaged observations* with an S9 total station or an S8 total station equipped with FineLock technology and firmware version R11 or later.

Tiltable RMT
(Trimble 5600 only)
Enable *Tiltable RMT* when you use a remote target tilted towards the instrument. Disable *Tiltable RMT* when you use a fixed vertical target. When disabled, the vertical angle measurement will be corrected for the small offset distance between the RMT and the prism center.

Autocentered search window and search window size
When performing a search with the *Autocentered search window* check box selected, General Survey uses the current horizontal and vertical angle of the instrument to set the center of the search window, and the horizontal and vertical range to calculate the extents of the window. These extents are sent to the instrument each time it performs a search.
To configure the top left and bottom right extents of the search window when the *Autocentered search window* check box is not selected:
 1. Tap *Set win*.
 2. Aim the instrument to the top left corner of the search window and tap *OK*.
 3. Aim the instrument to the bottom right corner of the search window and tap *OK*.
Note – *When performing a search using the Trimble SX10 scanning total station, you must use the Autocentered search window.*

FineLock tolerance window
FineLock technology locks onto targets only when they are within the FineLock sensor area. If the intended target cannot be found, FineLock ‘auto-gain’ increases slightly to attempt to find other nearby targets. However, this may not always be desirable.
The *FineLock tolerance window* limits the range that FineLock technology moves when trying to lock onto nearby targets. Targets outside this range are not locked to. Instead, a message shows that a target outside the defined tolerance was found.
The FineLock tolerance window you can configure is defined as a half window, where the maximum half window size is 4 mrad (13' 45")*, which is the smallest separation allowed between targets when using FineLock technology.
To configure the FineLock tolerance window:
 1. To open the *Instrument functions* screen, tap the Instrument icon in the status bar.
 2. Tap and hold briefly on the FineLock (or Autolock) button. When you release it, the *Target controls* dialog appears.
3. Tap Adv, and then configure the FineLock tolerance window Horizontal range and Vertical range.
4. Tap Accept.

Note – The FineLock tolerance window is available only when connected to an S9 total station or an S8 total station equipped with FineLock technology and firmware version R11 or later.

GPS search

During a robotic survey, if the instrument loses lock to the target, you can use a GPS/GNSS receiver to help point the instrument.

You can enable GPS Search through any of the following:

- a Trimble survey grade GNSS receiver
- one of the following auxiliary GPS options:
 - a Trimble controller with internal GPS
 - any GNSS receiver capable of outputting NMEA (GGA) through a serial or Bluetooth port to the controller:
 The receiver must be able to output GGA messages through the NMEA protocol at 1 Hz.
 For information on how to manually configure and connect to the receiver, refer to the receiver documentation.

GPS search is automatically enabled when you are:

- running an Integrated Survey
- using a Trimble controller with internal GPS

Note – When using a Trimble controller with internal GPS, a connected GNSS receiver is always used in preference to the internal GPS.

Enabling GPS search

Enabling GPS search using a Trimble survey grade GNSS receiver

1. Start the General Survey software and then establish a robotic connection between the Trimble controller and the Trimble total station.
2. From the main menu, select Instrument / Target controls.
3. Set the 3D check box as required.
 - If 3D is enabled, a 3D GPS Search position is computed, and the instrument can turn to the point both horizontally and vertically.
 - If 3D is disabled, the instrument can only turn horizontally to the GPS Search position.
 - If the GNSS receiver is initialized in an RTK survey, or if SBAS is available, you can enable 3D because the GNSS heights from a GNSS receiver should be accurate enough to turn the instrument’s vertical angle.
If the GNSS receiver is producing autonomous positions, or if SBAS is not available, Trimble recommends that you disable 3D to prevent incorrect GNSS heights causing inaccurate turning of the vertical angle.

4. Set the Select data source to Trimble GNSS.

In an integrated survey, the Select data source is automatically set to Trimble GNSS and the 3D check box is selected by default.

When connecting the controller to the receiver through Bluetooth wireless technology, you must enable Bluetooth communications on the controller, scan for the Bluetooth device and then set the Bluetooth device in the Connect to GNSS rover field at Settings/Connect/Bluetooth.

If you use a cable to connect the Trimble CU to a GNSS receiver, connect the USB-to-serial cable to the Trimble CU robotic holder before you start the General Survey software. Otherwise, the COM port is not available.

GPS search is now configured. The relationship between the GNSS positions and local positions must now be resolved before you can use GPS search.

Enabling GPS search using a Trimble controller with internal GPS

By default GPS search is preconfigured for using the Trimble controller's internal GPS (that is, GPS Search is on, Enable 3D is off, the Select data source is set to Auxiliary GPS, and the Receiver type is set to Internal GPS). To change these settings:

1. Start the General Survey software and then establish a robotic connection between the Trimble controller and the Trimble total station.
2. From the main menu, select Instrument / Target controls.
3. Set the 3D check box as required.
 - If 3D is enabled, a 3D GPS Search position is computed, and the instrument can turn to the point both horizontally and vertically.
 - If 3D is disabled, the instrument can only turn horizontally to the GPS Search position.

Trimble recommends that you disable 3D to prevent inaccurate GPS heights from internal GPS causing inaccurate turning of the vertical angle. It may be preferable to turn horizontally only.

If the Receiver type is not Internal GPS, tap Aux to select it.

Note – When using a Trimble controller with internal GPS, the Receiver type is automatically set to Internal GPS.

GPS search is now configured. The relationship between the GNSS positions and local positions must now be resolved before you can use GPS search.

Enabling GPS search using a generic GNSS receiver

1. Start the General Survey software and then establish a robotic connection between the Trimble controller and the Trimble total station.
2. From the main menu, select Instrument / Target controls.
3. Set the 3D check box as required.
 - If 3D is enabled, a 3D GPS Search position is computed, and the instrument can turn to the point both horizontally and vertically.
 - If 3D is disabled, the instrument can only turn horizontally to the GPS Search position.
4. Set the Select data source to Auxiliary GPS. If the Receiver type is not Custom, tap Aux, select Custom and then set the controller port as appropriate.

When using Bluetooth wireless technology to connect the controller to a Custom auxiliary GNSS receiver, from the Trimble Access menu, tap Settings / Connect / Bluetooth and then select the receiver in the Connect to auxiliary GPS field. For more information, see Bluetooth.

Resolving the relationship between GNSS positions and local positions

If you have a fully defined coordinate system, then an accurate relationship between the GNSS positions and local positions already exists using the coordinate system definition. The software assumes that the total station is set up in terms of the defined projection and datum, and GPS search is ready as soon as the station setup is complete. If your total station is not set up in terms of the defined coordinate system then using GPS search will cause the total station to turn incorrectly.

If you do not have a defined coordinate system, you must resolve the relationship between GNSS positions and local positions before GPS Search is ready. Once a station setup is complete, the General Survey software uses the NMEA positions from the GNSS receiver and the angles tracked by the robotic instrument to determine the relationship between the two positioning systems. GPS Search computes the relationship independently of the job’s coordinate system settings.

To determine the relationship, make sure that the GNSS receiver has a clear view of the sky and then, with the instrument locked to the prism, move the rod around the instrument until the relationship between the GNSS positions and local positions is resolved. A minimum of five positions at least five meters apart and at least ten meters from the instrument are required. If the geometry and GNSS positional accuracy is poor, you need more than five positions to resolve the relationship.

Poor GNSS positional accuracy may result in an inaccurate relationship being computed.

When GPS Search is ready, the message GPS Search ready appears in the status line, and the target icon displays a satellite icon above the prism.

Note –

- To view the GNSS status, tap GPS on the Target controls screen. Alternatively, from the GNSS status screen, tap and hold on the target icon.

 If you are going into a bad GNSS environment for an extended period of time, tap pause to stop new positions being added into the GPS Search solution. Tap to start adding points into the GPS Search solution again.

- When GPS Search has good data, it can detect bad data and exclude it from its computations. However, if there are more bad positions than good positions, it is difficult for GPS Search to detect and exclude bad positions. Too much bad data in the computations may prevent GPS Search from becoming ready. If this occurs, move to a better GNSS environment and then tap Reset to restart the GPS Search.
If you perform a calibration or change the coordinate system settings, the existing relationship between the GNSS positions and local positions is lost and must be recomputed.

Using GPS search

GPS search is used automatically when you perform a search for the target. If GPS Search is ready, the instrument turns to the GPS Search position. With a good GNSS position, for example from a Trimble R8 receiver with an RTK fixed solution, and when snap is enabled, the instrument should snap to the target immediately. If the instrument does not snap immediately, it performs a search before locking to the target.

When using GPS Search with a Trimble Survey Grade receiver, a cross indicates the position of the GNSS receiver. When using any other receiver and a GNSS position is available, a satellite icon appears in the map. If a GPS Search solution is available, a black satellite icon appears 🆕. If a GPS Search solution is not available, a red satellite icon appears 🚫. To turn to the GNSS position in a conventional survey, make sure that there is nothing selected in the map and then tap and hold briefly in the map. From the menu that appears, select Turn to GNSS to turn the instrument horizontally to the GNSS position.

Tap Search in the Joystick screen to perform a normal search even when GPS Search is ready. Use this when you need to search for a target without using the GPS Search position, such as searching for a backsight target.

To perform a GPS-aided search from the Joystick screen, tap 🆕Search.

Note – As soon as the instrument locks on to the target, the Joystick screen closes.

To perform a standard search throughout the General Survey software, pause GPS Search at any time.

Interrupted target measurement

Configure Interrupted target measurement settings in the Target controls screen.

Select this option if the measurement is likely to be interrupted, for example, when measuring in traffic. The instrument continues to measure to the target, even if there are prism obstructions, up to the Interrupt timeout value.

During an automated measurement, if the instrument fails within the Interrupt timeout period the instrument will move back to the target and attempt the measurement again.

Use this option when:

- performing a station setup plus
- performing a resection
- measuring rounds

Note –

- Interrupted target measurement is available only when using instrument firmware version R12.3.39 or later.
- Target interrupted measurement is optimized for instruments with a DR Plus EDM.
Video

Instruments that have Trimble VISION technology are equipped with one or more built-in cameras. The integrated camera(s) enable you to:

- See the telescope’s field of view on the controller screen, eliminating the need to look through the telescope
- Control the instrument movement from the Video screen
- Capture images
- View features from multiple sources in 3D, overlaid on the Video screen
- Measure with DR more easily
- Verify that all required measurements have been taken
- Document important visual information, for example site conditions

When connected to an instrument with a camera, do one of the following to access the video screen:

- From the main menu, tap Instrument / Video.
- Tap the Instrument functions icon and then tap Video in the Instrument functions screen.
- If you are running Trimble Access on a tablet controller and you are in a task screen that supports AccessVision, tap ☞ or ☞ so that the graphical display is visible in the task screen and then tap ☞ to toggle the Map view and Video view.

Note –

- **Video is not available when the General Survey software is connected through a serial cable connection.**
- **For all instruments, if the camera in use is not coaxial with the EDM then you need a distance to correct for the parallax.**

When using a:

- **Trimble VX Series or S Series instrument that has VISION technology:**
 - The instrument has a single camera that is non-coaxial.
 - You must put the EDM into tracking mode to obtain a distance so that the inner crosshair in the Video screen appears and is correcting for the parallax.

- **Trimble SX10 scanning total station:**
 - The tele camera is coaxial, so there is no parallax.
 - The primary and overview cameras are non-coaxial.
 - The EDM automatically measures distance when the Video screen is open, so the EDM does not need to be in tracking mode. When the EDM is getting a return, the inner crosshair in the Video screen appears and is correcting for any parallax.

- **Because of the resolution of the video image, there may be a difference of up to one pixel between the crosshair in the video image and the crosshair viewed through the telescope. This difference can be seen with all overlaid data.**
Snapshots taken between 3°36' (4 gon) and the zenith will not be directly matched to the point data in the RealWorks Survey software.

For more information, see the following sections:

- **Video toolbar**
- **Controlling the instrument from the Video screen**
 - Turning the instrument using Tap-and-move
 - Controlling the instrument using the on screen controls (SX10 only)
 - Configuring additional functions using the Video softkeys
- **Capturing images**
- **Viewing features overlaid in the Video screen**
- **Video Show menu**

Video toolbar

The Video toolbar buttons are as follows:

<table>
<thead>
<tr>
<th>Button</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zoom in/out to the maximum optical zoom level/full extents. For very precise aim when using the Trimble SX10 scanning total station, tap and then tap to use digital zoom or use the on screen Zoom indicator.</td>
</tr>
<tr>
<td></td>
<td>Zoom in/out one zoom level at a time. Alternatively, when using a tablet controller place two fingers on the screen and stretch out to zoom in on the center of the video or pinch in to zoom out. Drag one finger across the screen to pan.</td>
</tr>
<tr>
<td></td>
<td>Tap Snapshot to capture an image.</td>
</tr>
<tr>
<td></td>
<td>Tap Fill region to fill the framing region with shading to improve contrast against the video screen. Note – This button only appears if you are in the Scanning or Panorama screen and connected to a Trimble VX Series or S Series instrument that has Vision technology.</td>
</tr>
<tr>
<td></td>
<td>Tap Camera options to define image settings. See Camera options.</td>
</tr>
</tbody>
</table>
| ![Show](image8) | Tap **Show** and then tap:
 - **Settings** to configure display and photo properties.
 - **Scans** to select which scans are displayed.
 - **Filter** to select which features are displayed.
 - Tap ![Filter](image9) to filter points by **Point name**, **Code**, **Descriptions** (if enabled) and **Note**. For more information, see **Filtering data using wildcard searching**. |
Controlling the instrument from the Video screen

You can control the instrument from the Video screen using the following:

- Turning the instrument using Tap-and-move
- Controlling the instrument using the on screen controls (SX10 only)
- Configuring additional functions using the Video softkeys

Turning the instrument using Tap-and-move

Tap-and-move allows you to control the instrument. Tap in the video screen to turn the instrument to that location.

Note –

- When you are working in the video screen, the up, down, left, and right arrow keys are in Joystick mode and can be used to turn the instrument.
- Tap-and-move is affected by the offset from the non-coaxial camera.

Controlling the instrument using the on screen controls (SX10 only)

When the connected instrument is a Trimble SX10 scanning total station, by default the Video screen displays the following controls.

Zoom indicator

The Zoom indicator in the top left of the Video screen indicates the current level of zoom. Tap the bar of the Zoom indicator to quickly change the zoom level.

Joystick controls

Use the Joystick controls to turn the instrument.

Tap an arrow key to turn the instrument one pixel. Tap and hold an arrow key to keep turning the instrument.

Turn buttons

Use the Turn buttons to turn the instrument horizontally 90° to the right or left, or 180°.

Tip – To hide some or all of these controls from the Video screen, tap / Settings.
Configuring additional functions using the Video softkeys

Use the video softkeys to configure the following additional functions:

<table>
<thead>
<tr>
<th>Softkey</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Options</td>
<td>Enable Auto measure to automatically start a measurement when you press the measure key.</td>
</tr>
<tr>
<td>+Station</td>
<td>Start a new scan station. This softkey appears only if the current station type is a scan station (SX10 only).</td>
</tr>
</tbody>
</table>

Capturing images

You can capture the image displayed in the Video screen.

- Captured images are saved as JPG files to the `<jobname>` Files folder.
- Captured images can be viewed in Review job.
- Image options are controlled by Video Show menu.

Images can be automatically captured when a measurement from the video window is taken.

To easily attach images from an instrument to a point using the attribute field, see Linking media files.

Tip - Use the Panorama function to automatically capture multiple images for the defined frame area. For more information, see Capturing a panorama with a VX or S Series total station or Capturing a panorama with an SX10 scanning total station.

To ensure that images can be correctly matched to point data in the Trimble Business Center or RealWorks Survey software, always complete a station setup before you capture any images. Otherwise, there is no orientation information stored with the image. If you have set up a Trimble SX10 scanning total station on a non-coordinated point, create a scan station instead of performing a standard station setup.

Note – If tracking is turned on and the instrument is locked to a prism, do not move the prism while the image is being captured. Otherwise, you could capture the wrong image, and the wrong orientation information will be stored with that image.

To transfer JPEG files from the Trimble CU in the docking station to the office computer, use the USB-to-Hirose cable. You cannot use the DB9-to-Hirose serial cable to transfer JPG files.

Viewing features overlaid in the Video screen

Features from the job are overlaid onto the video image to show a graphical representation of features in 3D. Overlaid features can come from multiple sources:

- points, lines, and arcs from the current job database
- points from linked jobs, linked CSV files, and from map files (for example, DXF and SHP files)
- coded features from feature libraries
16 Conventional Survey Instruments

Note –
- *Features can be displayed only if they are defined in 3D. This requires that a full 3D station setup has been completed, with a station elevation and instrument height defined.*
- *Features displayed in the video screen cannot be selected.*
- *Only grid coordinates are displayed. If you have not defined a projection, only points stored as grid coordinates appear.*
- *If there is a point with the same name as another point in the database, the point with the higher search class is displayed. For more information about how the General Survey software uses search classes, see Database search rules.*

Video Show menu

The *Show* menu has the following categories:
- *Settings*
- *Scans*
- *Filter*

Settings

Settings are grouped as follows:
- *Display*
- *Snapshot*
- *Annotate options*
- *Photo properties*
- *On screen display*

Display

The *Display* group controls whether items are displayed in the video or map screen. Select:
- *Names* to display name labels next to points in the map.
- *Codes* to display code labels next to points in the map.
- *Elevations* controls the option to display elevations in the video screen.
- *Label color* controls the color used to display points and elevations.

If the controller is connected to a Trimble SX10 scanning total station, you can also select:
- *Points* to display points
- The *Scan point color* and the *Scan point size*.

Scan point color

<table>
<thead>
<tr>
<th>Select</th>
<th>To...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan color</td>
<td>Indicate the scan the points belong to</td>
</tr>
<tr>
<td>Station color</td>
<td>Indicate the station used to measure the points</td>
</tr>
<tr>
<td>Gray scaled intensity</td>
<td>Indicate the reflective intensity of points using a gray scale</td>
</tr>
<tr>
<td>Cloud color</td>
<td>Show all points the same color</td>
</tr>
</tbody>
</table>

Snapshot

Enable *Autostore snapshot* to automatically store captured images. If *Autostore snapshot* is not selected, the image is displayed before storing, enabling you to *Draw* on the image. Enable *Snapshot on measure* to automatically capture a snapshot after a measurement is taken from the video screen.

Annotate options

Enable *Annotate snapshot* to add an information panel and crosshairs for the measured position to the image.

Photo properties

The *Photo properties* group controls the settings for images captured using the instrument. The available settings depend on the connected instrument:

- Set the file name, image size, and compression.
- File names are automatically incremented from the start file name. The image captured is always the same size as the video display on screen. Not all image sizes are available at all zoom levels. The higher the quality of the image, the larger the file size of the captured image.
- With *High Dynamic Range (HDR)* selected, the instrument captures three images rather than one image, each with different exposure settings. During HDR processing in Trimble Business Center, the three images are combined to produce a composite image that has better tonal range to show more detail than any of the individual images.
On screen display

The *On screen display* options appear if the connected instrument is a Trimble SX10 scanning total station. Select or clear the check boxes to control whether items are in the *Video on screen controls*.

Select scans

Tap *Show* and then select *Scans*. Select the scan(s) to display on the map.

If the connected instrument is a Trimble SX10 scanning total station, the color beside each scan indicates the color used for the point cloud if *Scan color* is selected as the *Color mode* in the *Settings / Point cloud* options.

Select filter

To filter the data shown in the *Video* screen, tap *Show* and then select *Filter*.

Select which features are displayed by selecting them in the list.

Tap ☑️ to filter points by *Point name, Code, Descriptions* (if enabled) and *Note*. For more information, see *Filtering data using wildcard searching*.

Camera options

This topic describes the options for the camera in an instrument that has Trimble VISION technology.

To access the camera options, tap ✉️ in the *Video* screen.

The available options depend on the instrument connected.

- Trimble SX10 Spatial Station
- Trimble S7/S9 total station
- Trimble VX Spatial Station or S6/S8 total station with VISION technology

Camera options for the Trimble SX10 scanning total station

Configured camera options for the Trimble SX10 scanning total station apply to the overview, primary, and tele cameras. Only the white balance options apply to the plummet camera.

Brightness

Brightness controls the brightness of the video image on the controller screen as well as captured images. Increase the brightness to make shadows and mid-tones in an image brighter without affecting highlights.

Sharpness

Sharpness controls how quickly information transitions at an edge in the image on the controller screen as well as captured images. Increase the sharpness for sharper transitions and more clearly defined edges.
Note - Increasing the sharpness introduces more noise into the image; over-sharpening images will result in a grainier image.

Spot exposure
When capturing an image with even lighting, Trimble recommends setting Spot exposure to Off so that the light levels in the entire frame are measured, and the exposure is averaged without giving special weighting to a particular area so that the bright and dark areas of the image are balanced. When aiming the instrument, or for images with uneven lighting conditions, Trimble recommends setting Spot exposure to Average. When you select Average, the software divides the rectangle into four windows of equal size and calculates the average exposure to adjust the exposure of the entire image. SE appears below the central rectangle and only the area within the rectangle is used to measure the light levels. Tap the image to move the rectangle to a different position.

White balance
White balance controls the light levels in the video image on the controller screen as well as captured images. The default setting is Auto. In most cases you can get accurate color in your images by leaving this setting set to Auto. If you are working in extreme or unusual lighting conditions, you may get more accurate color by selecting one of the following:

- When outdoors, in bright settings, select Daylight.
- When under artificial light, select Incandescent.
- When outdoors, in dull settings, select Overcast.

Manual focus
The Manual focus check box appears only when the tele camera is being used. Select the check box to disable auto focus and then tap the arrows to adjust the camera focus. When enabled, MF appears below the central rectangle. Manual focus is particularly useful when the camera has auto focused on a nearby object that is a different distance from the object you want to focus on.

Camera options for the S7/S9 total station

White balance
In most cases you can get accurate color in your images by selecting Auto and then selecting the most appropriate Scene mode. However, if the image has a tint to it, select Manual, manually adjust the white balance and then recapture the image. Tap Set white balance to store the new white balance settings.

Scene mode
Select the Scene mode appropriate for the light conditions at your location:

- When outdoors, in bright settings, select Bright sunlight or Daylight.
- When under artificial light, select Halogen.
- When under fluorescent lighting, select Warm fluorescent or Cold fluorescent.
Set white balance
Tap Set white balance to adapt the white balance to the contents of the current frame. This is used as the white balance until you tap Set white balance again.

Note – This setting assumes that the view framed in the video screen has an average color of mid-gray. If that is not the case, Trimble recommends positioning a mid-gray card in front of the camera and focusing the camera on the card before you tap Set white balance.

Spot exposure
When capturing an image with even lighting, Trimble recommends setting Spot exposure to Off so that the light levels in the entire frame are measured, and the exposure is averaged without giving special weighting to a particular area so that the bright and dark areas of the image are balanced.

When aiming the instrument, or for images with uneven lighting conditions, Trimble recommends enabling spot exposure. When enabled, only the area within the center rectangle is used to measure the light levels. The software divides the central rectangle into four windows of equal size and compares those windows to adjust the exposure of the image.

If you select:
- **Average**, the software calculates the average exposure across the four windows within the central rectangle and then uses that to adjust the exposure of the image.
- **Illuminate**, the software selects the darkest of the four windows and adjusts the exposure of the image so that the darkest window is correctly exposed.

 For example, use Illuminate when capturing an image of a dark house or roof corner in front of a bright sky. The dark house or roof corner is illuminated.
- **Darken**, the software selects the lightest of the four windows and adjusts the exposure of the image so that the lightest window is correctly exposed.

 For example, use Darken when capturing an image through a window. The objects through the glass are darkened so that they are more visible.

Camera options for the Trimble VX Spatial Station or S6/S8 total station with VISION technology

Brightness
Brightness controls the brightness of the video image on the controller screen as well as captured images. Increase the brightness to make shadows and mid-tones in an image brighter without affecting highlights.

Contrast
Contrast controls the contrast of the video image on the controller screen as well as captured images. Increase the contrast to make images more vibrant; decrease contrast to make images duller.
White balance
White balance controls the light levels in the video image on the controller screen as well as captured images.
Select the setting most suitable to the lighting conditions at your setup:
- When outdoors, in bright settings, select *Daylight*.
- When under artificial light, select *Incandescent*.
- When under fluorescent lighting, select *Fluorescent*.

Data output
Two data output formats are supported:
- GDM data output
- Pseudo NMEA GGA output

For information on outputting NMEA from the GNSS receiver see NMEA outputs.

GDM data output

<table>
<thead>
<tr>
<th>Use GDM data output option to stream...</th>
<th>from these controllers...</th>
<th>to this instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal angle, vertical angle, slope distance, vertical distance, horizontal distance, Northing, Easting, Elevation, date, time</td>
<td>Trimble CU, TSC3, Trimble tablet</td>
<td>Trimble VX Spatial Station or Trimble S Series total station or directly from the COM port of the Trimble VX Spatial Station or Trimble S Series total station</td>
</tr>
</tbody>
</table>

To enable GDM streamed data output:
1. From the main menu, select *Instrument / Data output*.
2. Set the *Streamed data* to either *After measurement* or *Continuous*.
3. Select either *GDM HA VA SD* or *GDM user defined* as the *Streamed format*.
 - configure the GDM labels.
4. If the *Streamed format* is set to *GDM user defined*:
 1. Configure the GDM labels. Refer to the *Supported labels* table below.
 2. Configure the *End of transmission character*. Select 62 (">"), 4 (EOT) or 0 (None).
5. If necessary, configure the *Port details*.
 - If the *Streamed format* is set to *User defined*, configure the *Time output*.

GDM data output remains enabled while the *Data output* form is open. To access other functions in the General Survey software and leave *Data output* running, use *Switch to* or *Menu*.
To stop data output, tap *Stop*, or close the *Data output* form.
Supported labels

<table>
<thead>
<tr>
<th>Label</th>
<th>Text</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>HA</td>
<td>Horizontal angle</td>
</tr>
<tr>
<td>8</td>
<td>VA</td>
<td>Vertical angle</td>
</tr>
<tr>
<td>9</td>
<td>SD</td>
<td>Slope distance</td>
</tr>
<tr>
<td>10</td>
<td>VD</td>
<td>Vertical distance</td>
</tr>
<tr>
<td>11</td>
<td>HD</td>
<td>Horizontal distance</td>
</tr>
<tr>
<td>37</td>
<td>N</td>
<td>Northing</td>
</tr>
<tr>
<td>38</td>
<td>E</td>
<td>Easting</td>
</tr>
<tr>
<td>39</td>
<td>ELE</td>
<td>Elevation</td>
</tr>
<tr>
<td>51</td>
<td>Date</td>
<td>Date</td>
</tr>
<tr>
<td>52</td>
<td>Time</td>
<td>Time</td>
</tr>
</tbody>
</table>

Note –

- *If streamed output is on and no new distance is available, the HA and VA labels are sent rather than the user defined labels.*
- *If streamed output is on, and the instrument is in Autolock mode but it is not locked onto a target, GDM data is not sent. When using Autolock mode, the instrument must be locked onto a target for any GDM data to be sent.*
- *The angle and distance units match the General Survey system settings.*
- *To set the number of decimal places for the horizontal angle and vertical angle records, select Jobs / Properties of job. Tap the Units button and then select the appropriate option in the Angle display field.*
- *The northing, easting, and elevation units match the General Survey system setting.*
- *Before the system can output northing, easting, and elevation, you must complete a station setup. Otherwise, the system outputs 0, 0, 0.*
- *To stream data from the COM port on the Trimble CU robotic holder, or the Trimble VX Spatial Station or Trimble S Series total station, you must connect the cable before you open the Data output form. Otherwise, the COM port is not available.*

Pseudo NMEA GGA output

This output format is based on the NMEA (National Marine Electronics Association) standard for interfacing marine electronic devices. A modified version of one of the NMEA ‘sentences’, the GGA sentence, is being generated.
Use Pseudo NMEA GGA data output to stream... from these controllers... to this instrument

Northing, Easting, Elevation (rather than the standard latitude, longitude, and altitude values) Trimble CU Trimble VX Spatial Station or Trimble S Series total station or directly from the COM port of the Trimble VX Spatial Station or Trimble S Series total station
TSC3
Trimble tablet

To enable Pseudo NMEA GGA streamed data output:
1. From the main menu, select Instrument / Data output.
2. Set the Streamed data to either After measurement or Continuous.
3. Select Pseudo NMEA GGA as the Streamed format.
4. If necessary, configure the Port details.

Pseudo NMEA GGA data output remains enabled while the Data output form is open. To access other functions in the General Survey software and leave Data output running, use Switch to or Menu.

To stop data output, tap Stop, or close the Data output form.

A typical example of an output record is:
$GPGGA,023128.00,832518.67,N,452487.66,E,1,05,1.0,37.48,M,0.0,M,0.0,0001*49

The fields in this record are as follows:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$GPGGA</td>
<td>Data type identifier for the NMEA sentence</td>
</tr>
<tr>
<td>023128.00</td>
<td>Time field - UTC time of position fix (hhmmss.ss)</td>
</tr>
<tr>
<td>832518.67</td>
<td>North coordinate in the currently set units output to 2 decimal places</td>
</tr>
<tr>
<td>N</td>
<td>Fixed text indicating preceding value was the north coordinate</td>
</tr>
<tr>
<td>452487.66</td>
<td>East coordinate in the currently set units output to 2 decimal places</td>
</tr>
<tr>
<td>E</td>
<td>Fixed text indicating preceding value was the east coordinate</td>
</tr>
<tr>
<td>1</td>
<td>Fix quality (always output as 1 = GPS fix)</td>
</tr>
<tr>
<td>05</td>
<td>Number of satellites (not applicable in this case and always output as 05)</td>
</tr>
<tr>
<td>1.0</td>
<td>HDOP value (not applicable in this case and always output as 1.0)</td>
</tr>
<tr>
<td>37.48</td>
<td>Elevation value in the currently set units output to 2 decimal places</td>
</tr>
<tr>
<td>M</td>
<td>Units identifier for elevation value (also indicates units for north and east values). M or F indicating Meters or Feet (US Survey Feet or International Feet both use the F output as there is no means of indicating which feet unit)</td>
</tr>
<tr>
<td>0.0</td>
<td>Geoidal separation (always output as 0.0 since an elevation value is being output)</td>
</tr>
<tr>
<td>M</td>
<td>Units identifier for the geoidal separation (always output as M)</td>
</tr>
</tbody>
</table>
Field Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>Time in seconds since last DGPS update (not applicable in this case and always output as 0.0)</td>
</tr>
<tr>
<td>0001</td>
<td>DGPS base station ID (not applicable in this case and always output as 0001)</td>
</tr>
<tr>
<td>*49</td>
<td>Record checksum value with * separator.</td>
</tr>
</tbody>
</table>

If there are no coordinate values available for output in the Pseudo NMEA GGA sentence, the north, east, and elevation comma-separated fields in the record will be empty.

Radio settings

These settings are used with a conventional instrument in robotic mode.

You must configure the instrument radio settings to the same values as used on the controller.

Note – *General Survey cannot communicate with the total station when the instrument’s onboard programs are being used. After using the onboard programs, select Exit from the Setup menu to return to the Waiting for connection menu.*

Configuring radio settings

Configuring the controller to communicate with a Trimble robotic total station

1. From the Trimble Access menu, tap *Settings / Connect / Radio settings*.
2. To avoid conflicting with another user, enter a unique radio channel and network ID.
3. Tap *Accept*.

When the controller connects to the instrument using either a cable, Bluetooth or Wi-Fi, the radio settings in the instrument are automatically synchronized to match the controller settings.

Tip -

- To configure the instrument *Radio channel and Network ID* without General Survey, select *Radio settings* on the total station through the *Face 2* menu display. For more information, refer to the documentation for your instrument.
- For fast access to configure the *Radio settings* when connected to an instrument using a cable or Bluetooth, tap the instrument icon in the status bar, and then tap and hold on the Start Robotic icon.
- For fast access to configure the *Radio settings* when not connected to an instrument, tap the auto connect icon in the status bar, and then tap *Radio*.

Using a controller with an external radio

You can connect a controller to an external radio and then use the external radio to connect to the following instruments:

- Trimble VX Spatial Station
- Trimble S Series total station
Conventional Survey Instruments

- Spectra Precision FOCUS 30/35 total station

To create this connection, use one of the following:
- Bluetooth wireless technology to connect the controller to a TDL2.4.
- a serial cable to connect the controller.

To obtain a robotic connection to the instrument through an external radio you must reconfigure the radio port setting on the controller:
1. From the Trimble Access menu, tap Settings / Connect / Radio settings.
2. Tap Options, tap External radio.
3. If the external radio is a TDL2.4, select Bluetooth in the Controller port field.
4. Tap Accept.
5. Configure the Radio channel and Network ID to the same values as those set on the instrument.
6. Tap Accept.

Note –
- You cannot interchange the Trimble VX Spatial Station or Trimble S Series total station system radios with Trimble 5600 system radios because the radio technology is incompatible.
- In some countries, you must obtain a radio license before using your system on a working site. Make sure that you check the regulations for your country.

AT360 eBubble options

If the active target has inbuilt tilt sensors and you are performing a conventional survey, an eBubble (electronic bubble) showing tilt information for the target is available. To configure the eBubble tap Instrument / eBubble options from the main menu. You can configure the following settings:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>eBubble sensitivity</td>
<td>The bubble moves 2mm for the specified sensitivity angle. To decrease sensitivity select a large angle.</td>
</tr>
</tbody>
</table>
| Tilt tolerance | Defines the maximum radius that the target can tilt and be considered in tolerance.
The allowable range is 0.001m to 1.000m.
The tilt distance shown is calculated using the current target height. |

Tip - You can also access the AT360 eBubble options screen by doing one of the following:
- Tap the Settings icon in the top left corner of the eBubble window.
- Tap the AT360 softkey from the eBubble options screen for a different sensor. If you have more than one tilt sensor connected, changing the eBubble settings for one sensor changes the eBubble settings for all connected tilt sensors.
eBubble calibration

To calibrate the eBubble tap the *Calib* softkey and then tap the *Calibrate* button to begin tilt calibration. Level the instrument with the calibrated reference and brace against movement. Tap *Start*. The calibration information is stored in the job.

A well-calibrated eBubble is of vital importance. The accuracy of tilt information used to display the eBubble, and stored with measured points, is totally dependent on the calibration of the tilt sensors inside the active target. Using a poorly-calibrated eBubble will directly degrade the accuracy of the coordinates measured using the eBubble as a level reference. Great care should be taken when you are calibrating the eBubble to ensure the most accurate tilt information is available at all times.

Bubble reference: Calibrate the eBubble against a properly calibrated physical bubble. The accuracy of the eBubble depends totally on the accuracy of the physical bubble used to calibrate it.

Pole stability: When calibrating the eBubble, the pole the active target is on should be as vertical and as stable as possible. In practice this means using at least a bipod to hold the pole as still as possible.

Pole straightness: A bent pole will affect the tilt measured by the sensors in the active target. If you calibrate the eBubble using a bent pole and then change poles, the accuracy of points will be affected. Also, if you calibrate using a straight pole and then change to a bent pole, the target will not be plumb even though the eBubble will say it is, again affecting the accuracy of the measured points.

Abuse: If the active target suffers severe abuse such as a pole drop, you should recalibrate the eBubble.

For more information, refer to the active target documentation.

eBubble display

To display the eBubble, tap the *eBubble* softkey.

<table>
<thead>
<tr>
<th>Bubble color</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>You are within the defined tilt tolerance.</td>
</tr>
<tr>
<td>Red</td>
<td>You are outside the defined tilt tolerance.</td>
</tr>
</tbody>
</table>

Tips

- To move the eBubble window to a new position on the screen, tap and hold on the eBubble and drag to a new position.
- Press CTRL + L to show or hide the eBubble from any screen.

Connections

When connected to a Trimble SX10 scanning total station, use the *Connections* screen to change to a different connection method, end the survey, or disconnect from the instrument.

Tap the Instrument icon on the status bar and then tap the *Connections* button on the *Instrument functions* screen. Alternatively, from the main menu, select *Instrument / Instrument functions / Connections*.
To switch from the current connection method to a different connection method, tap *Switch to LR radio* or *Switch to Wi-Fi*. To automatically switch to USB, connect the cable from the instrument to the controller. To end the survey, tap *End Survey*. To disconnect from the instrument, tap *Disconnect*. *Auto connect* is temporarily disabled when you use *Disconnect*. For information on connection settings, see:

- Radio settings
- Wi-Fi

Battery status

To view the *Battery status* screen, do one of the following:

- From the *Instruments* menu, tap *Battery status*.
- Tap the Stacked Battery icon `35%` in the status bar.

The *Battery status* screen shows the status of all batteries in all connected devices, including the controller. The percentage level shown on the Stacked Battery icon matches the lowest battery level shown in the *Battery status* screen. *Note* – *The status of the TDL2.4 battery is shown only when the TDL2.4 is connected to a Trimble VX Spatial Station or Trimble S Series total station.*

For more information, tap the:

- Controller battery icon to view the operating system battery screen
- GNSS battery icon to view the *Receiver status* screen.
- V10 battery icon to view the *V10 settings* screen.
GNSS Survey Instruments

Instrument menu

The Instrument menu provides information about the instrument(s) connected to the Trimble controller running the Trimble Access software, and is used to configure the settings for the instrument.
For more information see:
- Conventional Instrument menu
- GNSS Instrument menu

Supported GNSS receivers

GNSS receivers that can be connected to the controller running Trimble Access are:
- Trimble integrated GNSS surveying systems: R10, R8s, R8, R6, R4, R2
- Trimble modular GNSS surveying systems: R9s, NetR9 Geospatial, R7, R5
- Trimble GeoExplorer Geo7X handheld
- Trimble GeoExplorer GeoXR handheld
- Trimble SPS Series GNSS receivers; SPS585, SPS77x, SPS78x, SPS88x, SPS75x, SPS85x, SPS985, SPS985L, SPS986
- Spectra Precision® receivers: SP60, SP80
- S-Max GEO receiver

Note – Because the SP60 and SP80 receivers use different GNSS firmware to other supported receivers, not all functionality in the General Survey software is available when an SP60 or SP80 receiver is in use. For more information, refer to the support bulletin SP60 and SP80 receiver support in Trimble Access.

GNSS Instrument menu

If the controller is connected to a GNSS receiver, the GNSS Instrument menu is shown. Available options depend on the type of receiver that is connected.
For a list of supported receivers, see Supported GNSS receivers.
Note – If a conventional instrument is also connected and you are performing an integrated survey, additional items appear in the Instrument menu. For more information, see Conventional Instrument menu.

For more information on GNSS instrument settings, see the following topics:
- GNSS functions
- Satellites
- Receiver files
- Position
- Receiver status
- GSM status
- Receiver settings
- GNSS eBubble options
- Magnetometer calibration
- Navigate to point
- RTK network status
- V10 panorama
- Camera
- Battery status

GNSS instrument functions

To access the **GNSS functions** screen, do one of the following:
- tap the instrument icon on the controller screen
- select **Instrument / GNSS functions** from the General Survey main menu
- press and hold the Trimble key

The **GNSS functions** screen is available for GNSS receivers. Use it to control commonly-used GNSS receiver functions. In **Bluetooth Settings**, you can configure the base and rover receivers separately and then use **GNSS functions** to switch between them. This makes it very easy to connect to and control your base or rover receiver.

The following buttons are available in GNSS functions:
- **Base mode**
- **Rover mode**
- **Bluetooth**
- **Data link**
- **Start survey**
- **End survey**
- **Power down Receiver**
- Satellites
- Position
- Navigate to point
- Import files
- Receiver status

If the button is not available to select, the function is not applicable to the current mode, or there is no receiver connected for the currently-selected mode.

The Base mode and Rover mode buttons within GNSS functions have different states. If the button is highlighted in yellow, the mode is enabled.

Base mode

When Base mode is enabled, auto-connect will attempt to connect to the Trimble GNSS receiver configured in the Connect to GNSS base field in the Bluetooth settings screen.

If there is no receiver configured there, it will try to connect to a Trimble GNSS receiver on the controller’s serial port. The receiver found on the serial port will be treated as the base receiver when the software is in Base mode.

In Base mode the Start survey and End survey buttons in GNSS functions start or end a base survey using the Survey Style that you selected when you tapped either of those buttons.

The auto-connect icon shows if the software is in Base mode.

Rover mode

When Rover Mode is enabled, auto-connect will attempt to connect to the Trimble GNSS receiver configured in the Connect to GNSS rover field in the Bluetooth settings screen.

If there is no receiver configured there, it will try to connect to a Trimble GNSS receiver on the controller’s serial port. The receiver found on the serial port will be treated as the rover receiver when the software is in Rover mode.

In Rover mode the Start survey and End survey buttons in GNSS functions start or end a rover survey using the Survey Style that you selected when you tapped either of those buttons.

The auto-connect icon shows if the software is in Rover mode.

Data link

You can use this button to connect to and configure the radio you are using for your RTK data link.

When the instrument is in Rover mode, tap the Data link button to go to the Rover data link settings screen.

When the instrument is in Base mode, tap the Data link button to go to the Base data link settings screen.

If the softkey displays >Rover or >Base tap to switch to the appropriate mode and then tap Connect.

In this screen, when a survey is not running, you can select the type of RTK radio you are using and then tap Connect (if it is available) to connect to and configure the communication settings in the radio. You can review and set the radio frequency, baud rate, and other settings if they are available to change in the radio device that the instrument is connected to.
You cannot edit Survey Style settings in this screen. If you start a survey with a different type of radio set in the Survey Style, the system uses that radio - not the radio that you set in GNSS functions.

If there is an RTK survey running, the radio screen shows the radio currently in use, and you may not be able to connect to an external radio.

For more information, see Configuring a radio data link.

Satellites

To see information about the satellites currently being tracked by the receiver, tap the satellite icon on the status bar or select Instrument / Satellites from the main menu.

A satellite is identified by the space vehicle (SV) number.

- GPS satellite numbers are prefixed with a "G".
- GLONASS satellite numbers are prefixed with an "R".
- Galileo satellite numbers are prefixed with an "E".
- QZSS satellite numbers are prefixed with a "J".
- BeiDou satellite numbers are prefixed with a "C".
- OmniSTAR satellites are identified as "OS".
- RTX satellites are identified as "RTX".

The satellite positions can be represented graphically with the sky plot or textually in a list.

Sky plot

To see a sky plot, tap Plot.

- Tap Sun to see the plot oriented towards the sun.
- Tap North to see the plot oriented towards north.
- The outside circle represents the horizon or 0° elevation.
- The inner, solid green, circle represents the elevation mask setting.
- The SV numbers on the diagram are placed in the position of that particular satellite.
- Satellites that are tracked but not used in the position solution appear in blue.
- The zenith (90° elevation) is the center of the circle.

Note –

- Tap the SV number to view more information about that specific satellite.
- An unhealthy satellite is shown in red.

Satellite list

To see the list of satellites, tap List.

- In the list of satellites, each horizontal line of data relates to one satellite.
- Azimuth (Az) and elevation (Elev) define a satellite’s position in the sky.
The arrow displayed next to the elevation indicates whether the elevation is increasing or decreasing.

- The signal-to-noise ratios (SNR) indicate the strength of the respective satellite signals. The greater the number, the better the signal.
- If a signal is not being tracked, then a dashed line (----) appears in the appropriate column.
- The check mark on the left of the screen indicates whether that satellite is in the current solution, as shown in the following table.

<table>
<thead>
<tr>
<th>Situation</th>
<th>What a check mark indicates</th>
</tr>
</thead>
<tbody>
<tr>
<td>No survey is running</td>
<td>Satellite is being used in the current position solution</td>
</tr>
<tr>
<td>RTK survey is active</td>
<td>Satellite is common to the base and rover receivers</td>
</tr>
<tr>
<td>Postprocessed survey is running</td>
<td>Satellite for which one or more epochs of data have been collected</td>
</tr>
</tbody>
</table>

- To see more information about a particular satellite, tap the appropriate line.

You can also select the following options:

- To stop the receiver tracking a satellite, tap the satellite to display the satellite information and then tap Disable.

 Note — *If you disable a satellite, it remains disabled until you enable it again. Even when the receiver is switched off, it stores that a satellite is disabled.*

- To change the elevation mask and the PDOP mask for the current survey, tap Options.

- To enable SBAS outside of a survey, tap Options and then select Enable SBAS.

- In a real-time survey, tap Base to see which satellites are being tracked by the base receiver. No values appear in the Az and Elev columns, as this information is not included in the correction message broadcast by the base.

- In a postprocessed survey, the L1 softkey appears in the Satellites dialog. Tap L1 to display a list of cycles tracked on the L1 frequency for each satellite.

 The value in the CntL1 column is the number of cycles on the L1 frequency that have been tracked continuously for that satellite. The value in the TotL1 column is the total number of cycles that have been tracked for that satellite since the start of the survey.

- With a dual-frequency receiver, the L2 softkey appears in the Satellites dialog. Tap L2 to display a list of cycles tracked on the L2 frequency for each satellite.

 The SNR softkey appears. Tap SNR to return to the original screen and view information about the signal-to-noise ratio for each satellite.

Enabling and disabling SBAS satellites

When you start a survey configured to use SBAS with Trimble Access, the appropriate satellites are enabled in the receiver so that they can be tracked. To use an alternative SBAS satellite, disable the satellite(s) that you do not want to use, and enable the satellite that you want the receiver to track.

To do this:

1. Start the survey with the SBAS enabled style.
2. Tap the satellite icon.
3. Tap Info and then enter the PRN number of the satellite that you want to enable or disable.
4. Tap Enable or Disable.

The SBAS satellites remain enabled or disabled until the next time that you start a new survey.

Receiver files

If the controller is connected to a receiver that supports this function, you can transfer files to and from the Trimble controller to the receiver.

The *Import from receiver* option is available when a Trimble GNSS receiver is in use. Use it to delete files in the connected receiver, or to copy files from the connected receiver to the controller.

Note –

- To access the External memory of a receiver that supports both Internal and External memory, tap on the Parent folder from the Internal directory and then tap on External.
- You cannot undelete deleted receiver files.

The *Export to receiver* option is available when a Trimble GNSS receiver is in use that has a compact flash card inserted. You can transfer files only to and from the current project folder on the controller. To transfer files to or from another project folder, open a job in the required project folder (which thereby changes the one to the current project folder) and then transfer the files. Alternatively, use Windows Explorer to copy the files to another folder.

Transferring files from the receiver to the controller

1. From the main menu, select Instrument / Receiver files / Import from receiver.

 The list that appears shows all files stored in the receiver.

2. Tap the file(s) to transfer. A check mark appears next to the selected files.

 Note – To see more information about a file, highlight the file name and tap Info. To delete a file, highlight the file name and tap Delete. To select all files within the current directory, tap All.

3. Tap Import. The Copy file to Trimble Controller screen appears.

4. Tap Start.

Transferring files from the controller to the receiver

1. From the main menu, select Instrument / Receiver files / Export to receiver.

 The list that appears shows all files in the current project folder on the controller.

2. Tap the file(s) to transfer. A check mark appears next to the selected files.

3. Tap Export.

4. Tap Start.
Position

If the controller is connected to a GNSS / GPS receiver, or you are using a controller with internal GPS, you can view your current position.

Tap Store to store the current position in the job database.

Note – When using a controller with internal GPS, a connected GNSS receiver is always used in preference to the internal GPS.

A projection and datum transformation must be defined to view grid coordinates.

If the antenna height is defined, the software calculates the position of the pole tip. To also view the position of the base antenna, tap **Base**.

Tap **Options** to find out if the position is shown as WGS-84, local, grid, grid (local), ECEF (WGS84), station and offset, or USNG/MGRS.

If a GNSS receiver with an in-built tilt sensor is being used, the current tilt distance is also shown. The Position screen does not apply the tilt correction to positions; the position displayed is the uncorrected position.

Receiver status

To view the power and memory status of the connected GNSS receiver, the GPS time, and the GPS week, select **Instrument / Receiver status** from the main menu.

GSM status

The GSM status is available only with Receiver Internal modems.

Note – The GSM status is not available when the receiver’s internal modem is connected to the Internet.

To view the GSM signal strength and available network operators when using the Trimble Internal GSM module, select **Instrument / GSM Status** from the Instrument menu.

The GSM status screen shows the status reported by the modem at the time you select **GSM status**, or when you tap **Refresh**.

If you set a PIN on the SIM card and the modem is in a locked state, you must key in the SIM PIN to be sent to the modem. The PIN is not stored, but the receiver remains unlocked with the correct PIN until you turn off the power and then turn it on again.

Note – After three attempts to unlock the SIM card using an incorrect PIN, the SIM card is blocked, except for emergency calls. You are prompted to enter a PUK (Personal Unblocking Key) code. If you do not know the PUK for your modem, contact the supplier of the modem SIM card. After ten unsuccessful attempts to enter the PUK, the SIM card is invalidated and is no longer operable. When this occurs, you must replace the card.

Network operator shows the current network operator. The home network icon 🏡 shows that the current network operator is the home network for the active SIM card. The roaming network icon 🔴 shows that the current network operator is not the home network.

Select network shows a list of network operators obtained from the mobile network.
When you enter the GSM status menu or when you tap Refresh, the modem queries the mobile network for the list of network operators. Poor reception can result in fewer networks being returned by the network when the modem queries it for the list. Some SIM cards are locked to specific networks. If you select a network operator that is forbidden by the host network, the system shows one of the following messages: Failed to select network operator or Network not allowed - emergency calls only.

Select Automatic to put the modem into 'automatic' network selection mode. The modem then searches for all network operators and tries to connect to the most appropriate network operator, which may or may not be the home network.

If you select any other network operator from Select network, the modem goes into 'manual' selection mode and tries to connect with the selected network operator.

If you select GSM status or tap Refresh while in 'manual' mode, the modem searches only for the last manually-selected network operator.

For a list of network operators that you can connect to, contact your subscribed network operator. Signal strength shows the GSM signal strength. Firmware version shows the modem firmware version.

Receiver settings

To view the configuration of the connected GNSS receiver, select Receiver settings from the main menu. Alternatively, tap and hold on the receiver icon in the status bar to view the Receiver settings.

eBubble options

If your receiver has inbuilt tilt sensors an eBubble (electronic bubble) is available.

- To configure the eBubble tap eBubble.
- To calibrate the eBubble tap eBubble and then Calib.
- To display the eBubble, tap eBubble and then eBubble.

Wi-Fi

You can use the Trimble Access software to configure the Wi-Fi settings in a receiver that is Wi-Fi enabled. To do this:

1. Connect to the receiver but do not start a survey.
2. Select Instruments / Receiver settings and tap Wi-Fi. If the Wi-Fi softkey is not shown, make sure you have not started a survey.
3. Select the Mode. Three modes are supported:
 - Off
 - Access point: Use this mode to enable the receiver as an access point so that many clients can connect to it.
 - Client: Use this mode to enable the receiver to connect to an existing network.

Note – Enabling Access point or client mode will shorten the run time of the receiver battery.
4. Configure the settings as required. Refer to the receiver manual for further details.

 Tip – To use the receiver as a mobile Wi-Fi hotspot when the receiver is operating as an access point, select the *Mobile hotspot* check box. This option is only supported when the receiver is connected to the Internet using its internal modem and *Route through controller* is disabled in the GNSS contact.

5. To update the receiver with the new settings, restart the receiver.

GNSS eBubble options

If your receiver has inbuilt tilt sensors and you are performing a GNSS survey, an eBubble (electronic bubble) showing tilt information for the receiver is available. To configure the eBubble tap *Instrument / eBubble options* from the main menu. You can configure the following settings:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>eBubble sensitivity</td>
<td>The bubble moves 2mm for the specified sensitivity angle. To decrease sensitivity select a large angle.</td>
</tr>
<tr>
<td>Tilt tolerance</td>
<td>Defines the maximum radius that the receiver can tilt and be considered in tolerance. The allowable range is 0.001m to 1.000m. The tilt distance shown is calculated using the current antenna height.</td>
</tr>
<tr>
<td>Tilt calibration status</td>
<td>Current tilt sensor calibration status.</td>
</tr>
<tr>
<td>Calibration expires in</td>
<td>The date that the current calibration will expire. The eBubble must then be recalibrated.</td>
</tr>
<tr>
<td>Calibration age limit</td>
<td>Displays the time period between calibrations. At the end of the time period the software will prompt you to recalibrate the eBubble. To edit the default value tap the pop-up arrow.</td>
</tr>
<tr>
<td>eBubble response</td>
<td>Controls the eBubble's responsiveness to movement.</td>
</tr>
</tbody>
</table>

Tip - You can also access the *GNSS eBubble options* screen by doing one of the following:

- Tap the Settings icon in the top left corner of the *eBubble* window.
- Tap and hold the receiver icon in the status bar to view the *Receiver settings* screen and then tap *eBubble*.
- Tap the R10 softkey from the *eBubble options* screen for a different sensor. If you have more than one tilt sensor connected, changing the eBubble settings for one sensor changes the eBubble settings for all connected tilt sensors.
eBubble calibration

To calibrate the eBubble tap the Calib softkey and then tap the Calibrate button to begin tilt calibration. Level the instrument with the calibrated reference and brace against movement. Tap OK.

WARNING - If you tap Cancel before the calibration is complete the previous calibration is lost and the eBubble will not be calibrated.

Note –

- The receiver does not need to be tracking satellites to calibrate the eBubble. However, because the calibration time is stored in the receiver, it is important that the controller has the correct time and timezone.

- The details of the calibration including the Tilt calibration status is stored in the job and can be reviewed from Jobs / Review job.

A well-calibrated eBubble is of vital importance. The accuracy of tilt information used to display the eBubble, and stored with measured points, is totally dependent on the calibration of the tilt sensors inside the GNSS receiver. Using a poorly-calibrated eBubble will directly degrade the accuracy of the coordinates measured using the eBubble as a level reference. Great care should be taken when you are calibrating the eBubble to ensure the most accurate tilt information is available at all times.

Bubble reference: Calibrate the eBubble against a properly calibrated physical bubble. The accuracy of the eBubble depends totally on the accuracy of the physical bubble used to calibrate it.

Pole stability: When calibrating the eBubble, the pole the GNSS receiver is on should be as vertical and as stable as possible. In practice this means using at least a bipod to hold the pole as still as possible.

Pole straightness: A bent pole will affect the tilt measured by the sensors in the GNSS receiver. If you calibrate the eBubble using a bent pole and then change poles, the accuracy of points will be affected. Also, if you calibrate using a straight pole and then change to a bent pole, the GNSS will not be plumb even though the eBubble will say it is, again affecting the accuracy of the measured points.

Temperature: The tilt sensors are affected by the temperature of the unit. The GNSS receiver will expire the calibration if the current temperature inside the receiver is more than 30 degrees Celsius different to when the current calibration was performed. This forces you to recalibrate the eBubble.

Abuse: If the GNSS receiver suffers severe abuse such as a pole drop, you should recalibrate the eBubble.

See the receiver manual for further information.

eBubble display

To display the eBubble, tap the eBubble softkey.

<table>
<thead>
<tr>
<th>Bubble color</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>You are within the defined tilt tolerance.</td>
</tr>
<tr>
<td>Red</td>
<td>You are outside the defined tilt tolerance.</td>
</tr>
</tbody>
</table>
Tips

- To move the eBubble window to a new position on the screen, tap and hold on the eBubble and drag to a new position.
- Press CTRL + L to show or hide the eBubble from any screen.

See also: Tilt auto measure and Tilt warnings.

Magnetometer calibration

Note – This topic describes calibrating the magnetometer in the R10 receiver. For information on calibrating the magnetometer in the V10, see V10 Magnetometer Calibration.

A well-calibrated magnetometer is of vital importance when surveying compensated points. The magnetometer calculates the direction of the tilt of the antenna. Information from the magnetometer is reflected in the precision estimates for the point. Using a poorly calibrated magnetometer will directly degrade the accuracy of the coordinates measured when surveying a compensated point.

WARNING - The performance of the magnetometer is affected by nearby metal objects (for example, vehicles or heavy machinery) or objects that generate magnetic fields (for example, high voltage overhead or underground power lines). Always calibrate the magnetometer away from sources of magnetic disturbance. In practice this usually means outdoors.

Note – Calibrating the magnetometer near sources of magnetic disturbance does not "correct" for the interference caused by these objects.

Calibrating the magnetometer

1. In the Instrument screen, tap eBubble options and then tap Calib.
2. Detach the receiver from the pole.
3. To perform the magnetometer calibration, tap Calibrate.
4. Tap Start and then rotate the receiver as shown on-screen for a minimum of 12 different orientations, until calibration is complete.
5. Reattach the receiver to the pole.
6. To perform the magnetometer alignment, use the eBubble to make sure the pole is as vertical as possible and then tap Calibrate.
7. Tap Start and then rotate the receiver slowly and smoothly around its vertical axis until calibration is complete.

Note –

- For best horizontal accuracy, Trimble recommends you calibrate the tilt sensor and the magnetometer in the receiver each time you replace the battery.
- Calibrating the tilt sensor invalidates the magnetometer alignment. Always re-perform the magnetometer alignment after calibrating the tilt sensor.
- The magnetometer is less sensitive to temperature than the tilt sensor. However, if the current temperature inside the receiver is more than 30 degrees Celsius different to when the tilt
Sensor calibration was performed, the tilt sensor calibration is invalidated. This in turn invalidates the magnetometer alignment.

- If the GNSS receiver suffers severe abuse such as a pole drop, you should recalculate the tilt sensor and magnetometer.
- If you tap Cancel before the calibration is complete, the existing magnetometer calibration is used.
- The receiver does not need to be tracking satellites to calibrate the magnetometer. However, because the calibration time is stored in the receiver, it is important that the controller has the correct time and time zone.
- The details of the calibration are stored in the job and can be reviewed from Jobs / Review job.

Navigate to point

If the controller is connected to a GNSS receiver, or you are using a controller with internal GPS, you can navigate to a point. Using GNSS / GPS, you can navigate to a point without a survey running.

If you are running a conventional survey, you can also navigate to a point. During the conventional survey, if the controller is connected to a GNSS receiver, or you are using a controller with internal GPS, you can continue navigating to a point if you lose lock. Tap the GNSS button and then navigate to the point.

When you start the Navigate to point function, it uses the settings in the last GNSS survey style that you used.

CAUTION - To ensure that internal GPS is available on a TSC3 or Trimble Slate controller, the GPS format must be set to NMEA (this is the default format). If the GPS format is set to SirF Binary, you cannot use the internal GPS. To set the format press the Windows button to access the Start menu and then tap SatViewer. In the GPS tab, make sure that the NMEA option is selected.

Note –
- No configuration is required for the Geo7X/GeoXR controller or a Trimble tablet.
- When using a controller with internal GPS, a connected GNSS receiver is always used in preference to the internal GPS.
- If you are using a GNSS receiver that can track SBAS signals, when the radio link is down you can use SBAS positions instead of autonomous positions. To use SBAS positions, set the Satellite differential in the survey style to SBAS.

Navigating to a point

1. Do one of the following:
 - From the map, select the point you want to navigate to. Then tap and hold on the map and select Navigate to point from the shortcut menu.
 - Select Instrument / Navigate to point from the main menu.
2. Fill in the other fields as required and then tap Start. The graphical display screen appears.
3. Use the arrow to navigate to the point, which is shown as a cross. When you are close to the point, the arrow disappears and a bull’s-eye symbol appears. A grid also appears and changes scale as you move closer to the target.

4. When you are on the point, the bull’s-eye symbol covers the cross.

5. Mark the point if required.

Tips
- Tap Position and then Store to store a point.
- If navigating with a Trimble controller that has an internal compass, you can use the internal compass to aid navigation. See Compass for further details.

RTK network status

When you perform a real-time survey and the reference station or network server that you receive base station data from supports status messaging, the RTK network status menu option appears. The screen for this menu option shows the reported status of the reference station server, the options the reference station supports (such as RTK on Demand), and also enables you to configure notification and storage of the status messages in the current job.

If you select the Popup new Reference Station messages check box, messages from the reference station or network server pop up on the screen.

If you select the Store Reference Station messages check box, messages from the reference station or network server are stored in the current job database.

Battery status

To view the Battery status screen, do one of the following:
- From the Instruments menu, tap Battery status.
- Tap the Stacked Battery icon in the status bar.

The Battery status screen shows the status of all batteries in all connected devices, including the controller. The percentage level shown on the Stacked Battery icon matches the lowest battery level shown in the Battery status screen.

Note – The status of the TDL2.4 battery is shown only when the TDL2.4 is connected to a Trimble VX Spatial Station or Trimble S Series total station.

For more information, tap the:
- Controller battery icon to view the operating system battery screen.
- GNSS battery icon to view the Receiver status screen.
- V10 battery icon to view the V10 settings screen.
Coordinate System

Coordinate system

A coordinate system consists of a projection and datum transformation and, sometimes, additional horizontal and vertical adjustments.

When you create a job, select a coordinate system by one of the following methods:

- Scale factor only
- Select from library
- Key in parameters
- No projection/ no datum
- Broadcast RTCM
- SnakeGrid (available only when the Advanced Geodetic option is enabled)

If you need to perform a GNSS site calibration, or change the parameters manually after selecting the coordinate system, select Jobs / Properties of job / Coord. sys.

When editing coordinate system details for a job that uses a coordinate system selected from the library, Trimble Access modifies the coordinate system name to indicate that some user preferences have been defined. When the coordinate system is:

- Selected from the library:
 - The Coordinate system field displays "Zonename (SystemName)".
 - Changing the geoid model or project height does not change the name of the coordinate system.
 - Editing any projection or datum parameters changes the coordinate system name to "Local site". To remove these changes and revert to the original name of the coordinate system, you must reselect it from the library. If you overlay a GNSS site calibration over this “Local site” the name of the coordinate system remains “Local site”.
 - Completing a GNSS site calibration changes the coordinate system name to "Zonename (Site)". If you disable the site calibration (by keying in parameters) the coordinate system name reverts to the original name.
 - Editing any horizontal adjustment or vertical adjustment parameters changes the coordinate system name to "Zonename (Site)". If you remove these changes, the coordinate system name reverts to the original name.
 - Defined using No projection/no datum, completing a GNSS site calibration changes the
coordinate system name to "Local site".

- Defined using **Key in parameters**, the coordinate system name is "Local site".

If you modify the coordinate system by calibration or by manually changing the parameters, you must do so before you compute offsets or intersection points, or stake out points in the local coordinate system.

To set up a **ground coordinate system** for the job, choose the **Select from library or Key in parameters** option.

To customize the coordinate systems available on the General Survey software, use the Coordinate System Manager software. For more information see **Customizing the coordinate system database**.

Customizing the coordinate system database

You can customize the coordinate system database used by the General Survey software. This enables you to:

- Reduce the number of coordinate systems available in the General Survey software so that it includes only the ones you need.
- Customize existing coordinate systems definitions or add new coordinate system definitions.
- Include GNSS site calibrations in the coordinate system library.

You must use the Coordinate System Manager software to modify the Coordinate System Database (CSD) and then transfer the modified database to the [System files] folder on the Trimble controller. When a [custom.csd] file exists in the [System files] folder, the General Survey software uses the custom.csd database instead of the coordinate system database built into the General Survey software.

Note – The Coordinate System Manager software is installed at the same time as your **Trimble Office software**, for example, **Trimble Business Center**.

Tips for using the Coordinate System Manager software:

- To make multiple selections, press **CTRL** or **SHIFT**.
- To hide records, right click the selection and then select **Hide**.
- To display hidden records, select **View / Hidden Records**. Hidden records are displayed with a dark red icon.
- To unhide hidden records, right click hidden record(s) and then clear the **Hide** check box.

For more information, see the Coordinate System Manager Help.

There are a number of ways you can use the Coordinate System Manager software to customize the coordinate systems. From the following options, choose the one that best suits your needs.

Reducing a coordinate system library to one or more coordinate systems, zones, and sites

1. Run the Coordinate System Manager software on your office computer.
2. Do one or more of the following to hide the required element:
Coordinate system: In the left pane of the Coordinate Systems tab, select the coordinate system(s) that you do not want, right click and then select Hide.

Zone: In the left pane of the Coordinate Systems tab, select a coordinate system, from the right pane, select the Zone(s) you do not want, right click and then select Hide.

Site: From the Sites tab, right click the site(s) you do not want and then select Hide.

3. Select File / Save As.
4. Name the file [custom.csd] and then click Save.

By default, the file is saved in [Program Files\Common Files\Trimble\GeoData] with the extension *.csd.

Exporting only user-defined coordinate systems
1. Run the Coordinate System Manager software on your office computer.
2. Select File / Export.
3. Select User-defined records only and then click OK.
4. Name the file [custom] and then click Save.

By default, the file is saved in [Program Files\Common Files\Trimble\GeoData] with the extension *.csw.

Note – If a GNSS site calibration has been saved using your Trimble Office software, a site with the assigned name is added to the Sites tab and a Site group is created in the Coordinate Systems tab, if required. When you create a customized coordinate system that includes sites saved by the Trimble Office software, include those sites created in the Sites tab. The Site group in the Coordinate Systems tab contains the coordinate system details referenced by the sites saved in the Sites tab, but the calibration details are only stored in the site in the Sites tab.

Transferring customized coordinate systems
You can transfer the file to the controller using the Trimble Data Transfer utility or Windows Mobile Device Center. The file must be called [custom.csd] for the General Survey software to access it.

A file transferred by the Data Transfer utility is automatically renamed and saved to the [System files] folder. If you transfer the file using Windows Mobile Device Center, you must copy the file to the [System files] folder and then rename the file to [custom.csd].

For more information on transferring a file from a Trimble controller to an office computer, refer to the Trimble Access Help.

When the Open dialog appears, select CSD Files (*.csd) or CSD Files (*.csw) from the Files of type list.

Selecting a custom site in General Survey software
1. From the main menu, select Jobs / New job.
2. Enter the Job name.
3. In the Properties group, tap the Coord sys button.
4. Choose Select from library and then tap Next, if required.
5. If this is a new custom.csd file, a warning appears. Tap OK to accept.
6. In the System field, select [User sites].
7. In the *Site* field, select the required site.
8. If required, select a geoid model.
9. To return to the *New job* dialog, tap *Store*.
10. In the *New job* dialog, tap *Accept* to save the new job.

Scale factor only

Use this projection type when you are doing a conventional-instrument only survey with a local scale factor. This option is useful for areas that use a local scale factor to reduce distances to the local coordinate system.

To choose a scale factor only projection:
1. Create a new job.
2. Select *Scale factor only* from the *Select coordinate system* menu.
3. Enter a value in the *Scale* field and then tap *Store*.

Projection

A projection is used to transform local geodetic coordinates into local grid coordinates.

Note – *Enter an appropriate default height value for the General Survey software to correctly calculate a sea level correction and then apply it to the grid coordinate.*

GNSS coordinates are relative to the WGS-84 ellipsoid. To work in local grid coordinates, you must specify a projection and datum transformation.

You can specify a projection:
- when a job is created and you have to choose a coordinate system (select from a list, or key in)
- during a survey (you calculate values by performing a calibration)
- in the Trimble Business Center software, when the data is transferred.

Do not change the coordinate system or calibration after you have staked out points, or computed offset or intersection points.

If a projection and datum transformation are specified, you can reduce any discrepancies between the WGS-84 coordinates and the local grid coordinates by performing a site calibration.

Ground coordinate system

If you require coordinates to be at ground level instead of projection level, use a ground coordinate system. When you select a ground coordinate system, grid distances equal ground distances.

To set up a ground coordinate system, when you create a job:
1. Specify a coordinate system by choosing the *Select from library*, or *Key in parameters* option.
2. To use ground coordinates with the selected coordinate system, tap the *Page down* button, and then from the *Coordinates* field, do one of the following:
• To key in a scale factor, select *Ground (Keyed in scale factor).*
• To let the General Survey software calculate the scale factor, select *Ground (Calculated scale factor).* Enter values in the *Project Location* group to compute the scale factor.

The computed scale factor allows for the projection scale factor at the Project Location to ensure that the combined factor (point scale factor multiplied by the sea level factor) at the Project Location equals 1.

The General Survey software applies the ground scale factor to the projection.

3. To add offsets to the coordinates, enter a value in the *False northing offset* and *False easting offset* fields as required.

Note—
• When working with a ground coordinate system the reported ground distance may not be the same as the reported grid distance. The reported ground distance is simply the ellipsoid distance corrected for the average height above the ellipsoid. However the grid distance is computed between the ground coordinates of the points, and is therefore based on a coordinate system that provides a combined scale factor of 1 at the Project Location.

• Use offsets to differentiate ground coordinates from unmodified grid coordinates.

Project height

The project height can be defined as part of the coordinate system definition when creating a new job. To find it, select *Jobs / Properties of job* for a coordinate system in either the *Library* or *Key in projection* dialogs.

If a point has no elevation, the General Survey software uses the project height in Cogo calculations.

If you combine GNSS and 2D conventional observations, set the *Project height* field to approximate the height of the site. This height is used with 2D points to calculate grid and ellipsoid distances from measured ground distances.

In 2D surveys where a projection has been defined, enter a value for the project height that approximates the height of the site. You need this value to reduce measured ground distances to ellipsoid distance, and to compute coordinates.

If you edit the project height (or any other local site parameter) after calibrating, the calibration becomes invalid and must be reapplied.

No projection / no datum

To select a coordinate system with an undefined projection and datum, when you create a job:

1. Tap the *Coord. sys* button and select *No projection/no datum*.
2. Set the *Coordinates* field to *Ground*, and enter a value (average site height) in the *Project height* field to use ground coordinates after a site calibration. Alternatively, set the *Coordinates* field to *Grid*.
3. Select the *Use geoid model* check box, and select a geoid model to calculate a Geoid/Inclined plane vertical adjustment after a site calibration.
Tip - To automatically complete the *Project height* field, tap *Here* to use the current autonomous height derived by the GNSS receiver, or tap *Point* to use the height of a point in the job or in a linked file.

Any points measured using GNSS are displayed only as WGS84 coordinates. Any points measured using a conventional instrument are displayed with null (?) coordinates. The General Survey software performs a calibration that calculates a Transverse Mercator projection and a Molodensky three-parameter datum transformation, using the supplied control points. The project height is used to compute a scale factor for the projection so that ground coordinates can be computed at elevation.

Broadcast RTCM

A Network RTK provider can configure a VRS network to broadcast RTCM messages that include some of the coordinate system definition parameters. When the *Broadcast format* is set to RTCM RTK, and the broadcast datum definition messages are broadcast by the VRS network, General Survey can use this to provide the datum and ellipsoid definition for a job.

When creating a new job to use with Broadcast RTCM, select *Broadcast RTCM* from the Select coordinate system screen, along with the appropriate projection parameters.

General Survey supports a subset of the RTCM transformation parameters, as shown below:

<table>
<thead>
<tr>
<th>Transformation message</th>
<th>Details</th>
<th>Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>1021</td>
<td>Helmert/Abridged Molodensky (Control)</td>
<td>Yes</td>
</tr>
<tr>
<td>1022</td>
<td>Molodensky-Badekas Transformation (Control)</td>
<td>Yes</td>
</tr>
<tr>
<td>1023</td>
<td>Ellipsoidal Datum Shift Grid Residual</td>
<td>Yes</td>
</tr>
<tr>
<td>1024</td>
<td>Plane Grid Residual</td>
<td>No</td>
</tr>
<tr>
<td>1025</td>
<td>Projection</td>
<td>No</td>
</tr>
<tr>
<td>1026</td>
<td>Projection Lambert Conformal Conic Two Parallel</td>
<td>No</td>
</tr>
<tr>
<td>1027</td>
<td>Projection Oblique Mercator</td>
<td>No</td>
</tr>
<tr>
<td>1028</td>
<td>Local Transformation</td>
<td>No</td>
</tr>
</tbody>
</table>

The RTCM broadcast message must contain either the 1021 or the 1022 control message. This defines what other messages will be present. All other messages are optional.

Datum shift grid values are broadcast at fixed time intervals for a grid surrounding the area you are working in. The size of the grid that is broadcast depends on the density of the source grid data. To perform coordinate system transformations, the grid file that is built by General Survey must include shift grids covering the location of points you are transforming. When you move to a new location, a new set of datum shift grid values is broadcast and there may be a slight delay until the appropriate values are received from the VRS network server.

The broadcast transformation messages include a unique identifier for the broadcast parameters. If the broadcast parameters change, the identifier changes, and the General Survey creates a new grid file to store the new datum grid shift values.
If the broadcast RTCM transformation changes, General Survey shows the following message: *The broadcast coordinate system has changed. Continue?*

- If you select Yes, the system creates a new grid file, or, if it exists, uses another grid file that matches the newly broadcast transformation. If you change grid files, the new grid file may not cover the same area as the old grid file, so General Survey may not be able to transform points where there are 'holes' in the grid file.
- If you select No, you cannot continue surveying. Create a new job and start the survey again. If you need access to data in the old job, link that job.

If you copy a job that is defined to use a Broadcast RTCM datum onto a different controller, and you do not copy the grid file, or if you delete the grid file on the controller, then General Survey does not have the appropriate grid file to perform the transformation and grid coordinates are not available. Similarly, if the controller with the copied job already has a grid file, but the grid file does not cover the area of the copied job, then coordinate transformation is not possible.

Note –

- *When a General Survey job with broadcast RTCM data is exported as a DC file, the GNSS observations are output as grid positions.*
- *A General Survey job with broadcast RTCM data cannot be imported to Trimble Business Center software version 2.0 or earlier.*

SnakeGrid

SnakeGrid is a coordinate system with minimal scale factor and height distortion, even when projects extend for many hundreds of kilometers.

A job using a SnakeGrid coordinate system must use a custom SnakeGrid parameter file. These files are obtained through a licensing arrangement from the UCL Department of Civil, Environmental and Geomatic Engineering. Each SnakeGrid parameter file is customized for a specific project alignment envelope. Go to www.SnakeGrid.org for details.

Note – *The SnakeGrid parameter file name must be named SnakeXXXX.dat, where "XXXX" can be anything you want.*

To choose a SnakeGrid projection:

1. Create a new job.
2. From the Cogo settings menu, make sure the Advanced Geodetic option is enabled.
3. From the Select coordinate system menu, select Key in parameters.
4. From the Projection menu, select SnakeGrid in the Type field.
5. Select the appropriate SnakeGrid parameter file.

SnakeGrid parameter files must be placed in the **Trimble Data\System Files** folder on the device.
Horizontal adjustment

A horizontal adjustment is a least-squares adjustment that is applied to minimize the differences between transformed grid coordinates and local control points.

Horizontal and vertical adjustments are calculated if you perform a calibration when a projection and datum transformation are defined.

Trimble recommends that you use a minimum of four control points to compute a horizontal and vertical adjustment.

Alternatively, you can key in horizontal adjustment parameters when you start a new job.

Vertical adjustment

This is a least-squares adjustment that is applied to convert (ellipsoid) heights to elevation. It is computed when you do a calibration. A minimum of one point is required to compute the adjustment. If more points are used, an inclined plane adjustment can be calculated.

If you have a geoid model selected, you can choose to use only the geoid model, or to use the geoid model and do an inclined plane adjustment. Trimble recommends that you use a geoid model to obtain more accurate orthometric heights from your GNSS measurements.

You can specify the type of vertical adjustment when you create a job. Set this parameter when you choose the coordinate system. You can also key in the parameters when you create a job.

To change the parameters for the current job, from the main menu select Jobs / Properties of job, tap Coord sys and then select Key in parameters / Vertical adjustment.

Note – When the Projection is set to Scale factor only, the Datum transformation, Horizontal adjustment, and Vertical adjustment options are not available. Select a non Scale factor only projection to access the other parameters.

Coordinate systems

Before starting a GNSS survey, decide which coordinate system to use. This topic discusses some things to consider when making this decision.

- Choosing a coordinate system for a conventional survey
- Choosing a coordinate system for a GNSS survey
- Choosing a coordinate system for a broadcast RTCM survey
- GNSS coordinate system
- Local coordinate systems
- Calibration
- Using a datum grid file
- Using a geoid model
- Trimble geoid models – WGS-84 versus local ellipsoid-based geoid models
Working with ground coordinates

If you intend to combine conventional observations with GNSS measurements, read the whole of this topic. To make only conventional observations, see Choosing a coordinate system for a conventional survey.

Choosing a coordinate system for a conventional survey

When surveying using conventional equipment, it is important to choose a suitable coordinate system.

For example, if a job is to combine GNSS measurements with conventional observations, choose a coordinate system that lets you view GNSS observations as grid points. This means that you must define a projection and a datum transformation. For more information, see Creating a job.

Note – You can complete the field work for a combined survey without defining a projection and a datum transformation, but you will not be able to view the GNSS observations as grid coordinates.

If you want to combine GNSS measurements with two-dimensional conventional observations, specify a project height for the job. For more information, see Project height.

If a job is to contain conventional observations only, select one of the following when you create the job:

- A typical coordinate system and zone that provide mapping plane coordinates. For example, State Plane coordinates.
- Scale factor only.

 In a conventional survey, measurements are made at ground level. To compute coordinates for these measurements, observations are reduced to grid level. The specified scale factor is applied to measured distances to reduce them from ground to grid.

 The Scale factor only option is useful for areas that use a local scale factor to reduce distances to grid.

Tip - If you are not sure what coordinate system to use, select the Scale factor only projection and enter a scale factor of 1.000.

Choosing a coordinate system for a GNSS survey

When you create a new job, the General Survey software prompts you to define the coordinate system you are using. You can select a system from the library, key in the parameters, select Scale factor only, or select No projection / no datum transformation. For more information, see Creating a job.

The most rigorous coordinate system consists of four parts:

- datum transformation
- map projection
- horizontal adjustment
- vertical adjustment

Note – To conduct a real-time survey in terms of local grid coordinates, define the datum transformation and map projection before starting the survey.
Tip - In the Coordinate view field, select Local to display local geodetic coordinates. Select Grid to display local grid coordinates.

When WGS84 coordinates are transformed onto the local ellipsoid, using a datum transformation, local geodetic coordinates result. Local geodetic coordinates are transformed into local grid coordinates using the map projection. The result is Northing and Easting coordinates on the local grid. If a horizontal adjustment is defined, it is applied next, followed by the vertical adjustment.

Choosing a coordinate system for a broadcast RTCM survey

When you create a new job, the General Survey software prompts you to define the coordinate system you are using. When surveying with VRS and the RTCM broadcast includes coordinate system parameters, create the job with the Datum set to Broadcast RTCM. To do this, select Broadcast RTCM from the Select coordinate system screen and then select the appropriate coordinate system to use from the available library definitions.

You can also use Key in parameters to enter your own specific projection definition. When you key in the parameters for the projection definition, make sure that the Datum transformation is set to Broadcast RTCM. To do this, tap the Datum trans button and then select Broadcast RTCM, before you save the coordinate system definition.

Coordinate system types

GNSS coordinate system

GNSS measurements are referenced to the 1984 World Geodetic System reference ellipsoid, known as WGS84. However, for most survey tasks, results in terms of WGS84 have little value. It is better to display and store results in terms of a local coordinate system. Before you start a survey, choose a coordinate system. Depending on the requirements of the survey, you can choose to give the results in the national coordinate system, a local coordinate grid system, or as local geodetic coordinates.

When you have chosen a coordinate system, search your survey archives for any horizontal and vertical control points in that coordinate system that are in the area to be surveyed. You can use these to calibrate a GNSS survey. For more information, see Calibration.

Local coordinate systems

A local coordinate system simply transforms measurements from a curved surface (the earth) onto a flat surface (a map or plan). Four important elements constitute a local coordinate system:

- local datum
- datum transformation
- map projection
- calibration (horizontal and vertical adjustments)

When you survey using GNSS, consider each of these.
Local datum
Because an exact model of the earth’s surface cannot be created mathematically, localized ellipsoids (mathematical surfaces) have been derived to best represent specific areas. These ellipsoids are sometimes referred to as local datums. NAD83, GRS80, and AGD66 are examples of local datums.

Datum transformation
GNSS is based on the WGS84 ellipsoid, which is sized and positioned to best represent the entire earth.
To survey in a local coordinate system, the WGS84 GNSS positions must first be transformed onto the local ellipsoid using a datum transformation. Three types of datum transformation are commonly used. Alternatively, you can choose not to use a transformation at all.
The datum transformations are as follows:
- three-parameter - This assumes that the rotational axis of the local datum is parallel with the rotational axis of WGS84. The three-parameter transformation involves three simple translations in X, Y, and Z. The three-parameter transformation that the General Survey software uses is a Molodensky transformation, so there may also be a change in ellipsoid radius and flattening.

 \textbf{Note} – \textit{Positions on a local datum are commonly called “local geodetic coordinates”. The General Survey software abbreviates this to “Local”}.
- Seven-parameter - This is the most complex transformation. It applies translations and rotations in X, Y, and Z, as well as a scale factor.
- Datum grid - This uses a gridded data set of standard datum shifts. By interpolation, it provides an estimated value for a datum transformation at any point on that grid. The accuracy of a datum grid depends on the accuracy of the gridded data set it uses. For more information, see \textit{Using a datum grid file}.

Map projection
Local geodetic coordinates are transformed into local grid coordinates using a map projection (a mathematical model). Transverse Mercator and Lambert are examples of common map projections.

\textbf{Note} - \textit{Positions on a map projection are commonly called “local grid coordinates”. The General Survey software abbreviates this to “Grid”}.

Horizontal and vertical adjustments
If published datum transformation parameters are used, slight discrepancies can exist between local control and GNSS-derived coordinates. These discrepancies can be reduced using minor adjustments. The General Survey software calculates these adjustments when you use the \textit{Site calibration} function. They are called horizontal and vertical adjustments.
Calibration

Calibration is the process of adjusting projected (grid) coordinates to fit the local control. You can key in a calibration, or let the General Survey software calculate it. You should calculate and apply a calibration before:

- staking out points
- computing offset or intersection points

The rest of this section describes how to perform a calibration using the General Survey software. To key in a calibration, see Creating a job.

Why calibrations are needed

If you calibrate a project and then survey in real time, the General Survey software gives real-time solutions in terms of the local coordinate system and control points.

Operations that require calibration

Note – Perform a calibration at any time, but always complete the calibration before staking out any points, or computing offset or intersection points.

If no datum and no projection are defined, you can only stake out lines and points that have WGS84 coordinates. Displayed bearings and distances are in terms of WGS84.

Specify a projection before staking out arcs, roads, and DTMs. The General Survey software does not assume that WGS84 is the local ellipsoid, so you must also define a datum.

Without a datum transformation, you can only start a real-time base survey with a WGS84 point.

For information on how to perform a calibration, see Calibration.

The following diagram shows the order of calculations performed when a calibration is calculated.
Performing calibration calculations

Use the General Survey software system to perform a calibration in one of two ways. Each method results in the computation of different components, but the overall result is the same if enough reliable control points (coordinates in your local system) are used. The two methods are:

- If you use published datum transformation parameters and map projection details when creating a job, and if you provide enough control points, the General Survey software performs a calibration that computes horizontal and vertical adjustments. Horizontal control points allow scale error anomalies in the map projection to be removed. Vertical control allows local
ellipsoid heights to be transformed into useful orthometric heights.

Tip - Always use published parameters if they exist.

- If you do not know the map projection and datum transformation parameters when creating the job and defining the local coordinate system, specify *No projection / no datum*.

Then specify whether grid or ground coordinates are required after a site calibration. When ground coordinates are required, you must specify the project height. In this case, the General Survey software performs a calibration that calculates a Transverse Mercator projection and a Molodensky three-parameter datum transformation using the supplied control points. The project height is used to compute a ground scale factor for the projection so that ground coordinates are computed at that height.

The following table shows the output of a calibration when various data is supplied.

<table>
<thead>
<tr>
<th>Projection</th>
<th>Datum transformation</th>
<th>Calibration output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Horizontal and vertical adjustment</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>Datum transformation, horizontal and vertical adjustment</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
<td>Transverse Mercator projection, horizontal and vertical adjustment</td>
</tr>
<tr>
<td>No</td>
<td>No</td>
<td>Transverse Mercator projection, zero datum transformation, horizontal and vertical adjustment</td>
</tr>
</tbody>
</table>

Local control for calibration

Trimble recommends that you observe and use a minimum of four local control points for the calibration calculation. For best results, local control points should be evenly distributed over the job area as well as extending beyond the perimeter of the site (assuming that the control is free of errors).

Tip - Apply the same principles as you would when placing control for photogrammetric jobs. Make sure that the local control points are evenly distributed to the extent of the job area.

Copying calibrations

You can copy a calibration from a previous job if the new job is completely encompassed by that initial calibration. If a portion of the new job lies outside the initial project area, introduce additional control to cover the unknown area. Survey these new points and compute a new calibration. Use this as the calibration for the job.

Tip - To copy the calibration from an existing job to a new job, make sure that the current job you want to copy has the calibration that you require in the new job. Then create the new job. A new job uses the default values from the previous job. Use the softkeys on the Job properties screen to change the defaults.

Using a datum grid file

A datum grid transformation uses interpolative methods to estimate the value of the datum transformation at any point in the area covered by the datum grid files. Two gridded datum files are
required for this interpolation—a latitude datum grid file and a longitude datum grid file. When you export a datum grid using the Trimble Geomatics Office software, the two datum grid files associated with the current project are combined into a single file for use in the General Survey software.

Note—*If you use the Canadian NTv2 datum grid please note the data is provided on an “as is” basis. The Department of Natural Resources Canada (NRCan) makes no guarantees, representations, or warranties respecting the data.*

Selecting a datum grid file

To select a datum grid file when creating a job, do one of the following:

- Select a coordinate system from the library provided in the General Survey software. Select the *Use datum grid* check box. In the *Datum grid* field, select the file that you want to use.

- Key in the coordinate system parameters. Select *Datum transformation* and set the *Type* field to Datum grid. In the *Datum grid* field, select the file that you want to use.

To select a datum grid file for use in the current job:

1. From the main menu, select *Jobs / Properties of job / Coord. Sys.*
2. Do one of the following:
 - If *Key in parameters* is selected, select *Next*. Select *Datum transformation* and set the *Type* field to Datum grid. In the *Datum grid* field, select the file that you want to use.
 - If *Select coordinate system* is selected, select *Next*. Select the *Use datum grid* check box. In the *Datum grid* field, select the file that you want to use.

The semi-major axis and flattening values for the selected datum grid file are displayed. These details overwrite any already provided by a specified projection.

Using a geoid model

The geoid is a surface of constant gravitational potential that approximates mean sea level. A geoid model or Geoid Grid file (*.ggl) is a table of geoid-ellipsoid separations that is used with the GNSS ellipsoid height observations to provide an estimate of elevation.

The geoid-ellipsoid separation value (N) is obtained from the geoid model and is subtracted from the ellipsoid height (H) for a particular point. The elevation (h) of the point above mean sea level (the geoid) is the result. This is illustrated in the following diagram:
Coordinate System

1 – Ground
2 – Geoid
3 – Ellipsoid

Note – For correct results, the ellipsoid height (H) must be based on the WGS-84 ellipsoid.

When you select geoid model as the vertical adjustment type, the General Survey software takes the geoid-ellipsoid separations from the geoid file chosen, and uses them to display elevations on the screen.

The benefit of this function is that you can display elevations without having to calibrate on elevation benchmarks. This is useful when local control or benchmarks are not available, as it makes it possible to work "on the ground" rather than on the ellipsoid.

Note – If you are using a geoid model in a Trimble Business Center project, make sure you transfer that geoid file (or the relevant part of it) when transferring the job into a Trimble controller.

Selecting a geoid file

To select a geoid file when creating a job, do one of the following:

- Select a coordinate system from the library provided in the General Survey software. Select the Use geoid model check box. In the Geoid model field, select the file to be used.
- Key in the coordinate system parameters. Select Vertical adjustment and set the Type field to Geoid model or Geoid/Inclined plane as required. (Select Geoid/Inclined plane if you intend to key in the inclined plane adjustment parameters.)

To select a geoid file for the current job:

1. From the main menu, select Jobs / Properties of job / Coord. Sys.
2. Do one of the following:
 - If the Key in parameters screen is selected, select Next. Select Vertical adjustment and set the Type field to Geoid model or Geoid/Inclined plane as required. (If you intend to key in the inclined plane adjustment parameters, select Geoid/Inclined plane.)
 - If the Select coordinate system screen is selected, select Next. Select the Use geoid model check box. In the Geoid model field, select the file to be used.

CAUTION - Traditionally, geoid models are based on global WGS-84 and, before Trimble Access System version 2011.00, were always treated as global WGS-84 based geoid models even when they might have been based on local ellipsoid geoid models. Trimble geoid models are now applied with
respect to the interpolation method set in the geoid file, enabling both global WGS-84 and local ellipsoid-based geoid models to be supported. For more information, see Trimble geoid models – WGS-84 versus local ellipsoid-based geoid models.

Working with ground coordinates

If you need coordinates to be at ground level instead of projection level (for example, in areas of high elevation), use a ground coordinate system.

When you select a ground coordinate system, grid distances equal ground distances.

Setting up a ground coordinate system

When you set up a ground coordinate system in a General Survey job, the software applies a ground scale factor to the coordinate system projection definition.

To set up a ground coordinate system when creating a job:

1. Define the coordinate system for the job. Do one of the following:
 - Choose the Select from library option to select a coordinate system from the library provided in the General Survey software. Tap Next.
 - Choose the Key in parameters option to key in the coordinate system parameters. Tap Next and then select Projection.

2. In the Coordinates field, choose an option to define the ground scale factor. Additional fields appear below the Coordinates field.

3. If you select the Ground (keyed in scale factor) option, enter a value in the Ground scale factor field.

4. In the Project location group, enter values in the fields as required. Alternatively, do one of the following:
 - Tap Here to enter the current autonomous position derived by the GNSS receiver. The autonomous position is displayed in terms of WGS-84.
 - Tap Point and then select a point from in the job or in a linked file to use the coordinates of that position.

 Note – The Point softkey is not available until there are positions in the job. When creating a new job, you must create the job, then link files to the job or measure a new point, and then return to the Job properties and edit the coordinate system settings. The Point softkey is now available.

The project height is used with 2D points to reduce ground distances in Cogo calculations. For more information, see Project height. If you select the Ground (calculated scale factor) option, the fields are used to calculate the ground scale factor. When the fields are completed, the computed ground scale factor is displayed in the Ground scale factor field.

5. To add offsets to the coordinates, enter a value in the False northing offset and False easting offset field, as required.

 Note – Use offsets to differentiate ground coordinates from unmodified grid coordinates.
To configure a ground coordinate system for the current job:
1. From the main menu, select Jobs / Properties of job / Coord. Sys.
2. Do one of the following:
 - If the Key in parameters screen is selected, tap Next and then select Projection. Select an option from the Coordinates field. Complete the fields below as required.
 - If the Select coordinate system screen is selected, tap Next. Select an option from the Coordinates field and then complete the fields below as required.

Trimble geoid models – WGS-84 versus local ellipsoid-based geoid models

CAUTION - Geoid models are traditionally based on global WGS-84, and were previously always treated as global WGS-84 based geoid models even when they might have been based on local ellipsoid geoid models. Trimble geoid models are now applied with respect to the interpolation method set in the geoid file, enabling both global WGS-84 and local ellipsoid based geoid models to be supported.

To avoid problems because of this change, consider the following items:

Note – The majority of jobs are created using coordinate systems with identity (0,0,0) transformations where the global and local ellipsoid are the same, and in this case, the enhancement of the Geoid model to support both global and local based interpolation models will have no impact.

- All the North American geoid models have their interpolation method set to identify that they are local ellipsoid based models, even though they were previously treated as global WGS-84 based. This means that if you are using datum transformation definitions that are not identity (0,0,0) transformations, elevations derived from the North American geoid models will change. This difference would normally have been corrected with a calibration, and now that the Geoid model is being interpolated differently, it is important to recalibrate jobs that fall into this category, as identified below.
- All calibrations with the three following attributes must be recomputed to provide the same results:
 - a vertical adjustment and
 - a geoid model that is not built on an identity (0,0,0) transformation and
 - an interpolation method that is local ellipsoid based
- The existing EGM96 (Global) geoid model (ww15mgh.ggf) is updated to have its interpolation method changed to indicate that it is a global WGS-84 based model rather than a local ellipsoid based model. Update your geoid model to ensure it is interpolated correctly.
- The existing OSU91A (Global) geoid model (OSU91A.ggf) is updated to have its interpolation method changed to indicate that it is a global WGS-84 based model rather than a local ellipsoid based model. Update your geoid model to ensure it is interpolated correctly.
- Because Minnesota and Wisconsin County Coordinate System definitions use customized local ellipsoids, you cannot use the standard local ellipsoid based North American Geoid models. Therefore, Geoid09 sub-grids G09-MN.ggf and G09-WI.ggf have been created and assigned as
the default geoid models in the updated definitions for these systems. Upload these global WGS-84 based sub-grid geoid models to any controller that will be using these coordinate system definitions.

- Any sub-gridded geoid model files that are uploaded to a controller inherit the same interpolation method as the geoid model they were created from. Update sub-grid models that were created from the existing EGM96 (Global) geoid model with sub-grid models created from the new EGM96 (Global) geoid model set up as a global WGS-84 based model.

Use the Geoid Model Configuration utility to check the interpolation method in a Trimble geoid model file and change it if necessary. To download the utility, go to www.trimble.com/tbc_ts.asp?Nav=Collection-71 and then click Downloads in the navigation panel on the left.

Note – When Trimble Access Installation Manager updates Trimble office products (for example, Business Center, Trimble Geomatics Office and GPS Pathfinder Office), it also updates the geodetic components. You must run Trimble Access Installation Manager on all office computers so that both the field and office software products are using the same geodetic components.

Options softkey

This softkey appears in only some screens. It allows you to change the configuration for the task being performed.

If you make changes using the Options softkey, they only apply to the current survey or calculation. The changes do not affect the current Survey Style or the job configuration.

Distance setting options

The computed area varies according to the Distance display setting. The following table shows the effect of the distance setting on the area calculated.

<table>
<thead>
<tr>
<th>Distances setting</th>
<th>Computed area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground</td>
<td>At the average ground elevation</td>
</tr>
<tr>
<td>Ellipsoid</td>
<td>On the ellipsoid surface</td>
</tr>
<tr>
<td>Grid</td>
<td>Directly off the grid coordinates</td>
</tr>
</tbody>
</table>

Traverse options

Use these options to specify how a traverse calculation is adjusted.

<table>
<thead>
<tr>
<th>Field</th>
<th>Option</th>
<th>What it does</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjustment method</td>
<td>Compass</td>
<td>Adjusts the traverse by distributing the errors in proportion to the distance between traverse points</td>
</tr>
<tr>
<td></td>
<td>Transit</td>
<td>Adjusts the traverse by distributing the errors in proportion to the northing and easting ordinates of the traverse points</td>
</tr>
</tbody>
</table>

Error distribution
<table>
<thead>
<tr>
<th>Field</th>
<th>Option</th>
<th>What it does</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angular</td>
<td>Proportional to distance</td>
<td>Distributes the angular error among the angles in the traverse based on the sum of the inverses of the distances between traverse points</td>
</tr>
<tr>
<td></td>
<td>Equal proportions</td>
<td>Distributes the angular error evenly among the angles in the traverse</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>Does not distribute the angular error</td>
</tr>
<tr>
<td>Elevation</td>
<td>Proportional to distance</td>
<td>Distributes the elevation error in proportion to the distance between traverse points</td>
</tr>
<tr>
<td></td>
<td>Equal proportions</td>
<td>Distributes the elevation error evenly among the traverse points</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>Does not distribute the elevation error</td>
</tr>
</tbody>
</table>

Note – The Compass option is the same as the Bowditch method of adjustment.

For information about calculating and adjusting a traverse, see Traverses.

Measure display

Use the Measure display field to configure how the observations are displayed on the controller. See the Conventional Instrument - Corrections table for a description of the measure display options and the corrections that are applied.

Subdivide pts code

When you subdivide a line or an arc, a number of points are created. Use the Subdivide pts code field to specify the code that the new points will be allocated. Choose from the name or the code of the line or arc that is to be subdivided.

Projection grids

Use a projection grid to handle projection types that are not directly supported by the Trimble coordinate system routines. A projection grid file stores local latitude and longitude values that correspond to regular northing/easting positions. Depending on the direction of the conversion, either projection or local latitude/longitude positions are interpolated from the grid data for points within the grid extents.

Use the Coordinate System manager to generate the defined projection grid (*.pjg) file.

For more information, refer to the Coordinate System Manager Help.

Use the Data Transfer utility or Windows Mobile Device Center to transfer the *.pjg file to the controller. For more information, refer to the General Survey File Transfer Help, Data Transfer Help or Windows Mobile Device Center Help.

To use the projection grid in General Survey:

1. From the main menu, select Jobs / New job.
2. Enter the Job name.
3. In the Properties group, tap the Coord sys button.
4. Select Key in parameters, if required, tap Next.
5. In the Key in parameters dialog, select Projection.
6. In the Type field, select Projection grid from the drop-down list.
7. In the Projection grid file field, select the required grid file.
8. If required, select the Use shift grid check box.
9. Tap Accept twice, to return to the New job dialog.
10. In the New job dialog, tap Accept to save the new job.

Shift grids

Initial projection coordinates are projections that are computed using specified projection routines. Some countries use shift grids to apply corrections to these coordinates. The corrections are generally used to fit the initial coordinates to local distortions in the survey framework, and so cannot be modeled by a simple transformation. You can apply a shift grid to any type of projection definition. Coordinate systems that use shift grids include the Netherlands RD zones, and the United Kingdom OS National Grid zones.

Note – The OS National Grid zones are now treated as a standard Transverse Mercator projection plus shift grid but they used to be handled as a special projection type with separate north and east grid files.

Shift grid files are installed to the desktop computer running the Coordinate System Manager utility, which is installed with Trimble Business Center. Shift grid files can be transferred from the desktop computer to the controller using your favourite file transfer method.

To apply a shift grid to a projection definition:
1. In the Projection dialog, select the Use shift grid check box.
2. In the Shift grid file field that appears, select the required file from the drop-down list.
Database Search Rules

This topic explains the database search rules relevant to the General Survey database:
- Dynamic database
- Search rules
- Exceptions to the search rules
- Linked files and their search rules
- Finding the best point in the database
- Duplicate points and overwriting
- Assigning control class to a point

Note – **If your job does not contain points of the same name, then the search rules are not used.**

Dynamic database

The General Survey software includes a dynamic database. This stores networks of connected vectors during RTK and conventional surveys, making the positions of some points dependent on the positions of others. If you change the coordinates of a point that has dependent vectors (for example, an instrument station, a backsight point, or a GPS base station), this affects the coordinates of all points that depend on it.

Note – **Editing the name of a point that has dependent vectors can also affect the coordinates of points that depend on it. If you change the point name, the following could occur:**

- positions of other points could become null
- if another point with a matching name exists, that one could be used to coordinate the dependent vectors

The General Survey software uses database search rules to resolve the coordinates of dependent points, based on the new coordinates for a point they depend on. If the coordinates of a point with dependent points move by a certain amount, the dependent points are shifted by the same amount.

When two points of the same name exist, the General Survey software uses search rules to determine the best point.
Search rules

The General Survey software lets multiple points with the same point name (point ID) exist in the same job.

To distinguish between points of the same name and to decide how these points are to be used, the General Survey software applies a set of search rules. When you ask for the coordinates of a point in order to perform a function or calculation, these search rules examine the database according to:

- the order in which the point records were written to the database
- the classification (search class) given to each point

Order in the database

A database search starts at the beginning of the job database and works down to the end of the job, looking for a point with the specified name.

The General Survey software finds the first occurrence of a point of that name. It then searches the rest of the database for points of the same name.

The rules generally followed by the software are:

- If two or more points have the same class and the same name, it uses the first point.
- If two or more points have the same name but different classes, it uses the point of higher class, even if this is not the first occurrence of the point.
- If two or more points (one from the job database and one from an attached linked file) have the same name, the software uses the point in the job database, regardless of the classification of the point in the linked file. For more information, see Linked files and their search rules.

There is one exception to this rule. You can now add points to a stakeout list from the linked file using the Select from file option, and the point from the linked file will be used even when the point already exists in the current job.

Search class

The General Survey software gives most Coordinates and Observations a classification. It uses this classification to determine the relative importance of points and observations stored in the job database.

Coordinates have priority over Observations. If a Coordinate and an Observation of the same name have the same class, the Coordinate will be used regardless of its order in the database.

The Coordinate Classes are arranged in a descending hierarchy, as follows:

- Control - (the highest class) can only be set when a point is keyed in or transferred.
- Averaged - is given to grid positions stored as a result of an average position computation.
- Adjusted - is given to points that are adjusted in a traverse computation.
- Normal - is given to keyed-in and copied points.
- Construction - is given to all points measured using Fastfix, which are typically used in the computation of another point.
- Deleted - is given to points that have been overwritten, where the original point had the same (or a lower) search class than the new point.
Deleted points are not displayed in point lists and they are not used in calculations. However, they do remain in the database.

Control class

Control class is used in preference to other classes. It can only be set by you. Use control class for points that you want to use in preference to points of the same name in the same job database. For more information, see Assigning control class to a point.

Note – You cannot overwrite a control class point with a measured point, or use a control class point in an average position computation. In general, if there are multiple observations with the same name, the best point is determined by the point that has the highest classification.

The Observation Classes are arranged in a descending hierarchy, as follows:
- Mean Turned Angle (MTA) *
- Normal, Backsight, and Stakeout are now all the same classification.
- Construction
- Check
- Deleted

Deleted observations are not displayed in point lists and they are not used in calculations. However, they do remain in the database.

If there are multiple observations of the same name which also have an equivalent classification (that is, normal and backsight are equivalent), then the best is the one that is found first in the database.

* Within a single station setup, a Mean Turned Angle observation is better than all the other classes - it is treated as an equivalent classification to the other classifications that are listed only when the observations appear in different station setups.

Example

If a point named "1000" is entered as the start point when calculating a from-a-baseline offset, the General Survey software searches for the first occurrence of point "1000". It then searches the rest of the database for any point named "1000", under the following rules:
- If no other point of this name is found, it uses the one it has to calculate the offset.
- If another point "1000" is found, the software compares the classes of the two points. It uses the point "1000" that has the highest classification. Remember that a Coordinate class point (for example, keyed-in) is higher than an Observation class point.

For example, if both points were keyed in, one was given a normal classification and the other a control classification, General Survey uses the control class point to calculate the offset, regardless of which record the search finds first. If one point was keyed in and one was observed, General Survey uses the keyed-in point.
- If the points are of the same class, General Survey uses the first one. For example, if both points named "1000" were keyed in, and both were given a normal classification, the first one is used.
Exceptions to the search rules

Normal search rules are not used in the following situations:

Exceptions to the search rules for GPS surveys

- In a GPS calibration
 Calibration searches for the highest class point stored as grid coordinates. This grid point is used as one of a pair of calibration points. The General Survey software then searches for the highest class GPS point stored as WGS84 coordinates or as a WGS84 vector. This point is used as the GPS part of the point pair.

- When starting an RTK rover
 When you start a rover survey, if the broadcast base point is called, for example, "BASE001", choosing Start survey causes the General Survey software to search for the highest class GPS (WGS-84) point of that name. If no GPS point with the name "BASE001" exists, but "BASE001" exists with grid or local coordinates, the General Survey software converts the grid or local coordinates of the point into a GPS (WGS-84) point. It uses the projection, datum transformation, and current calibration to calculate the point. It is then stored, as "BASE001", with WGS-84 coordinates and is given a check class classification so that the original grid or local coordinates will still be used in calculations.

 Note - The WGS-84 coordinates of the base point in the General Survey database are the coordinates from which GPS vectors are solved.

 If there is no base point in the database, the position broadcast by the base receiver is stored as a normal class point and it is used as the base coordinates.

Exceptions to the search rules for conventional surveys

- F1 or F2 from one station setup and an MTA from another station setup
 If you observe a point on more than one face, an F1 observation and an F2 observation are combined to create an MTA record. In this situation, the MTA is used to coordinate the point. However, if there is an observation to a point on F1 or F2 only, from an earlier station setup, and later a station setup (that could be at the same station as the first) to that same point creates a new MTA, then the MTA is deemed to be of the same class as the earlier F1 or F2 observation. In this situation, the order in the database rule is invoked, and the first point in the database is deemed the best point.

- Observations that coordinate a point are better than those that do not
 An angles and distance observation that coordinates the point, is better than an angles-only observation that does not coordinate a point. This rule applies even when the angles-only observation is earlier in the database, and is of a higher class, for example, an MTA.
Linked files and their search rules

Comma Delimited (*.csv or *.txt) files or General Survey (job) files can be linked to the current General Survey job to access external data. For more information, see Linked files. The General Survey search rules do not operate across linked files. Points in the current job are always used in preference to a point of the same name in the linked file, regardless of the classification. For example, if point 1000 in the current job has an As-staked classification, and point 1000 in a linked job file has a Normal coordinate classification, then the search rules will select the As-staked class point in preference to the Normal class point. If both points were in the current job, then the search rules would select the Normal class point.

Note – You can add points to the stakeout list using the Select from file option even if the point in the linked file already exists in the current job. When a point of the same name exists in the current job, this is the only way that you can stake a point from a linked file.

When points of the same name exist in a single CSV file, the General Survey software uses the first point. When points of the same name exist in multiple CSV files, the General Survey software uses the point in the first CSV file. The first CSV file is the first one in the file selection list. To change the order of the CSV files, tap the tabs at the top of the file selection screen. If you change the order of the CSV files, this may change the order in which files are selected.

When you accept a CSV file selection, and you then go back and select more CSV files, all subsequent files are appended to the initial selection, using the rules. This assumes that the original selection is not altered. Trimble recommends that you do not use multiple CSV files that contain points of the same name.

Finding the best point in the database

To find the point with the highest classification, use the Point manager. In the Point manager, the highest class point always appears at the first level in the tree structure. If there is more than one point of the same name, the tree structure has a second level, which contains all points of the same name. The point with the highest classification appears at the top, followed by the other points of the same name, in the order in which they were observed.

Duplicate points and overwriting

Duplicate point tolerances compare the coordinates of a point to be stored with a point of the same name that already exists in the database. If the coordinates are outside the duplicate point tolerances defined in the survey style, the Duplicate point out of tolerance dialog appears. Select Overwrite to store the new point and delete all existing points of the same class or below.

Of the options displayed, Overwrite and Average are the only two options that might result in a point being 'promoted' - thus changing the coordinates for the best point.

Note – This warning only appears if the new point is out of tolerance with the original point. If you have changed the tolerance values, the message may not appear. For more information, see Duplicate point tolerance.
In a conventional survey, observations from one station setup to the same point are combined to create an MTA record. You do not see the "duplicate point out of tolerance" warning.

If you store a face 2 observation to a point that already has a face 1 observation, the face 2 observation is checked to see if it is within tolerance of the face 1 observation and then stored. For more information about face 1 and face 2 observations, see Measuring a point in two faces.

WARNING - The duplicate point warning could indicate that you are about to overwrite a point that has dependent vectors. If you continue, the coordinates of the dependent vectors could change.

The overwrite rules

Overwrite deletes points, and results in a change to the coordinates of the best point.

Note – Deleted points remain in the database and have a search class of Deleted. For more information, see Search class.

If the Overwrite option does not appear in the General Survey software, this means that an overwrite would not result in changes to the coordinates of the best point.

General observation and coordinate overwrite rules

- Observations can overwrite and therefore delete Observations.
- Coordinates can overwrite and therefore delete Coordinates.
- Observations cannot overwrite Coordinates.
- Coordinates cannot overwrite Observations.

One exception to these rules is when a Rotate, Scale or Translation is performed. When one of these transformations is applied, the original observations are deleted and replaced by the translated points.

That does not mean that all Observations can overwrite all other Observations of the same name, and all Coordinates can overwrite all Coordinates of the same name. The Search class rules still apply.

Some examples

- If you measure a point with a name that already exists in the database, you can choose to overwrite it when you store the new one. All previous Observations of the same name, and with the same or a lower search class, are deleted.

 If a point stored as a Coordinate existed, then overwrite would not have been an option, because overwriting the observations would not have changed the best point.

- If you key in a point with a name that already exists in the database, you can choose to overwrite it when you store the new one. All previous points stored as Coordinates, of the same name, and with the same or a lower search class, are deleted. Points of the same name stored as Observations are not affected.

Storing another does not change the best point

If you measure or key in a point with a name that already exists in the database, you can choose to store both points in the database, and both are transferred with the job. The General Survey search
rules ensure that the point with the highest class is used for calculations. If there are two points of the same class, the first is used.

Averaging overwrites another average

If you measure a point and use a name that already exists in the current job, you can choose to average all points of that name. To store the observation and an averaged grid coordinate, select Average. Where an averaged position of that name already exists, the new averaged position will overwrite the existing averaged position. Averaged points have a coordinate classification. Coordinates have a higher classification than observations, so the stored averaged position is used in preference to any observations. You can also choose to Auto-average when the point is within tolerance. For more information, see Averaging methods.

Assigning control class to a point

Control class is the highest classification that you can give to a point. Any high-accuracy point that you use as a fixed standard in a job can be a control point.

If you specify control search class when you key in the coordinates for a point, you can be sure that those coordinates will not change until you key in another point of the same name and the same search class (control) and choose to overwrite the first point.

The General Survey software never elevates measured points to control class. This is because measured points have measurement errors and may change or be measured again during the course of the job. If the keyed-in point "CONTROL29" is control class, generally you would not want the coordinates of that point to change. A control class point is held fixed for the job.

The General Survey software can measure observed control points, but it does not give them control classification. This is because, in calibration, the measured point often has the same name as the keyed-in control point. This makes it easier to set up the calibration. It also makes it easier to manage your data, for example, if you know that all references to point "CONTROL29" on the ground are also references to point "CONTROL29" in the database.
Calculations performed by the General Survey software

This appendix outlines some of the calculations performed by the General Survey software.

- Transformations applied to GNSS positions
- Ellipsoid calculations
- Conventional instrument calculations
- Area calculations

Transformations applied to GNSS positions

For RTK surveying, coordinate transformations are required so that one set of coordinates (GNSS positions) can be represented in terms of another (grid positions), and vice versa.

Tip - To see an example of converting measurements to grid coordinates using the General Survey software, click here and then select the Calibration section.

This section provides an overview of the management and application of coordinate transformations using the General Survey software. It describes how to apply a datum transformation and map projection, and horizontal and vertical adjustments.

With the General Survey software, the site calibration process defines transformation parameters derived from a set of points. This set of points is coordinated in terms of two systems:

- WGS-84 Latitude, Longitude, Height (LLH) geodetic coordinates
- A local system with project-specific Northing, Easting, Elevation (NEE) grid coordinates

The following diagram shows the order of calculations performed when a calibration is calculated.
20 Calculations performed by the General Survey software

The formulae used in the above flow diagram are detailed below.

Transforming WGS-84 ECEF to WGS-84 LLH

When GNSS signals are processed by a receiver, they yield Earth-Centered-Earth-Fixed \((X, Y, Z)\) coordinates, which must then be transformed to more meaningful geodetic coordinates \((\phi, \lambda, H)\). Here, \(\phi\) represents the geodetic latitude, \(\lambda\) is the longitude, and \(H\) is the perpendicular height above the WGS-84 ellipsoid.
First we define:
\[e^2 = 2\phi - \phi^2 \]
\[N = \frac{r}{\sqrt{1 - e^2\sin^2(\phi)}} \]

where \(\phi \) is the flattening value for the source ellipse and \(r \) is the semi-major axis.

The values of the ECEF coordinates are:
- \(X = (N + H) \cos(\phi) \cos(\lambda) \)
- \(Y = (N + H) \cos(\phi) \sin(\lambda) \)
- \(Z = [N(1 - e^2) + H] \sin(\phi) \)

The inverse problem (that of transforming ECEF coordinates to \(\phi, \lambda, \) and \(H \)) is solved by using an iterative procedure. The values of \(e^2 \) and \(N \) now use the destination ellipsoid flattening and semi-major axis values:

\[\phi = \tan^{-1}\left(\frac{Z}{\sqrt{X^2 + Y^2}(1 - e^2)}\right) \]

then iterate

\[\phi = \tan^{-1}\left(\frac{Z + e^2N\sin(\phi)}{\sqrt{X^2 + Y^2}}\right) \]

\[\lambda = \tan^{-1}\left(\frac{Y}{X}\right) \]

if \(45^\circ S < \phi < 45^\circ N \)

\[H = \frac{\sqrt{X^2 - Y^2}}{\cos(\phi)} - N \]

or if \(\phi > 45^\circ N \) or \(\phi < 45^\circ S \)

\[H = \frac{Z}{\sin(\phi)} - N(1 + e^2) \]

Datum transformation

A datum transformation provides the necessary parameters for converting from one geodetic coordinate system to another.

The General Survey software can apply a predefined three- or seven-parameter datum transformation. It can also calculate a three-parameter datum transformation given points coordinated in WGS-84 and local L’L’H’.

\[X = T + kRX' \]

where \(X' \) is a matrix of 3-D Cartesian ECEF coordinates or Cartesian local coordinates, \(T \) is a matrix of translation parameters, \(k \) is a scalar, and \(R \) is a rotation matrix. In most cases, \(X' \) is measured and \(T, k, \) and \(R \) are user-specified.
To calculate a three-parameter datum transformation, pairs of WGS-84 LLH and local L'L'H' coordinates are needed. In the trivial one point case, the three translation parameters are just the vector components of the ECEF vector that connect the ECEF pair derived from the WGS-84 LLH and the local L'L'H'. In the non-trivial case, the translation parameters are the vector components of the average vector. This is represented as:

\[AX + W = 0 \]

where the solution

\[X = \begin{bmatrix} \Delta X \\ \Delta Y \\ \Delta Z \end{bmatrix} \]

and

\[W = \begin{bmatrix} X_1 - X'_1 \\ Y_1 - Y'_1 \\ Z_1 - Z'_1 \\ X_2 - X'_2 \\ Y_2 - Y'_2 \\ Z_2 - Z'_2 \\ \vdots \end{bmatrix} \]

where \(X_n \) is the value of the ECEF coordinate derived from the local L'L'H' of the nth 3-D point in the list, and \(X'_n \) is the X value of the ECEF coordinate derived from the WGS-84 LLH of the nth 3-D point and

\[A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \vdots \end{bmatrix} \]

is called the Molodensky matrix.

For more information, refer to *GPS Satellite Surveying* by A. Leick (John Wiley & Sons, 1995).

Map projection

A map projection defines the relationship between the local ellipsoidal surface (L'L'H') and a plane. Generally, map projection parameters are based on a local conformal mapping model.

For nearly all projection types used in the General Survey software, the height component of a projected coordinate is just the height above or below the datum at that point. For a plane projection, however, the definition includes an ellipsoidal height and a projected surface elevation at the origin point.

Horizontal adjustment

It may be necessary to minimize the discrepancy between local fixed control coordinates (Necontrol) and projected grid coordinates (N’E’). The horizontal adjustment solves parameter translations in north and east (ΔN, ΔE), a rotation φ, and a scale factor k using two different sets of plane coordinates—one converted from measurements in the field, and the other from a control list. Where the General Survey software generates its own three-parameter datum transformation, it is necessary to provide for scaling and rotation. This is done by a horizontal adjustment.

The following diagram shows the transformation between two coordinate systems.

![Coordinate systems for a horizontal adjustment](image)

The General Survey software minimizes the discrepancy between local NE control and NE values derived using GNSS observations and a datum transformation and map projection. It does this by performing a plane horizontal least-squares adjustment with no weighting.

In the trivial one point case, the translation parameters are just the Northing and Easting components of the vector between the two coordinated values. The scale factor is one, and the rotation value is zero.

For two or more points, calculation of horizontal adjustment uses a simple four-parameter transformation. This solves for two translations (ΔN, ΔE), a rotation (φ), and a scale factor (k) between coordinate pairs.

The geometry between the two coordinate systems results in two transformation equations:

- \[N' = aN + bE + \Delta N \]
- \[E' = -bN + aE + \Delta E \]

where \(a = k \cos \phi \) and \(b = k \sin \phi \) are used to simplify the matrix representation, and \(\Delta N \) and \(\Delta E \) represent the shifts of the N and E axis in the N’ and E’ system.

Common points in both coordinate systems are used in a least-squares adjustment to solve the four unknown parameters (a, b, ΔE, and ΔN).
Once estimates of \(a \) and \(b \) are determined, the rotation and scale between the two systems is calculated by:

\[
\varphi = \tan^{-1}\left(\frac{a}{b}\right) \quad \text{and} \quad k = \sqrt{a^2 + b^2}
\]

For more information about horizontal adjustment, please refer to *Observations and Least Squares* by E. Mikhail (John Wiley & Sons, 1982).

Vertical adjustment

The General Survey software determines a vertical adjustment using least-squares with no weighting. This adjustment requires measured WGS-84 heights and control elevations.

In the trivial one-point case, the adjustment consists of a constant height shift only. For two or more points, a tilt in north and east are also computed.

The inclined plane parameters are determined by solving the matrix equation:

\[
AX = B
\]

where the solution

\[
X = \begin{bmatrix} \Delta H \\ \Delta E \\ \Delta N \end{bmatrix}
\]

the components being the constant height shift and tilt east and north (in terms of a height shift per unit distance east or north), and the design matrix

\[
A = \begin{bmatrix}
1 & E_1 - E_1 & N_1 - N_1 \\
1 & E_2 - E_1 & N_2 - N_1 \\
\vdots \\
1 & E_n - E_1 & N_n - N_1
\end{bmatrix}
\]

where \(E_n \) and \(N_n \) are the coordinates of the \(n \)th point as derived from the WGS-84 data set. \(E_1 \), \(N_1 \) are the coordinates of the origin point of the adjustment. (The origin point can be any one of the \(n \) points.)

\[
B = \begin{bmatrix} H'_1 - H_1 \\ H'_2 - H_2 \\ \vdots \\ H'_n - H_n \end{bmatrix}
\]

where \(H'_n - H_n \) is the difference in elevation between the keyed in value for the \(n \)th point and the value derived from the WGS-84 data set.

Ground scale factor

In the General Survey software, you can define a *Project height* when you create a *No projection/no datum* job. The project height is used after you perform a site calibration to compute a scale factor for the projection, so that ground coordinates are computed at elevation.
The projection scale factor is calculated as follows:

\[SF = \frac{R + h}{R} \]

and

\[R = \frac{a}{\sqrt{1 - e^2 \sin^2(\phi)}} \]

where:
- \(SF \) = scale factor of projection
- \(R \) = ellipsoidal radius
- \(h \) = average elevation (reference elevation)
- \(a \) = semi major axis
- \(e^2 \) = eccentricity^2
- \(\phi \) = origin latitude of projection

Geoid model

The General Survey software can use a geoid model to provide orthometric heights from measured (by GNSS) WGS-84 heights.

Geoid model is one of the options in the *Vertical adjustment* field. (The other options in this field are *No adjustment*, *Inclined plane*, *Geoid model/Inclined plane*).

If you select Geoid model and you do not perform an in-field calibration, the elevation values displayed by the General Survey software represent the unadjusted elevation above the defined geoid using the relationship:

\[h_{\text{geoid}} = H - N \]

where:
- \(h_{\text{geoid}} \) = the unadjusted elevation above the geoid
- \(H \) = the measured GNSS height above the ellipsoid
- \(N \) = the geoid ellipsoidal separation, derived from a geoid model

If you select *Geoid model* and then perform an in-field calibration, the General Survey software computes the calibration parameters using \(h_{\text{control}} \) and \(h_{\text{geoid}} \) as inputs, so that the geoid model is inclined to fit the local control elevations. The method of vertical adjustment becomes *Geoid/Inclined plane*.
Ellipsoid calculations

The ground and ellipsoid distances in the General Survey software are calculated parallel to the ellipsoid. The equations used for these calculations are based on the Robbins ellipsoid geometry formulas. These formulas (by Dr A.R. Robbins) are in the Empire Survey Review No. 125, 1962. They are accurate to better than 20 mm over distances of 1,500 km. The errors can reach 16 meters at 4,500 km and more than 2,000 meters at 9,000 km.

Conventional instrument calculations

The following diagram labels the observations and corrections that are applied when you use the General Survey software with a conventional instrument.

Note – Interim corrections are not shown in the diagram. They are enclosed in square brackets in the table that follows.

Correction variables used in conventional instrument calculations

Where:

- VA_2 Vertical angle from conventional instrument.
 The General Survey software assumes that the conventional instrument applies any corrections for collimation and tilt.
- $[VA_3]$ Vertical angle corrected for curvature and refraction
- VA_4 Vertical angle corrected for curvature and refraction, instrument and target heights
- SD_R Slope distance from EDM
- $[SD_1]$ Slope distance corrected for prism constant (PC)
- $[SD_2]$ Slope distance corrected for prism constant and PPM
- SD_3 Slope distance corrected for prism constant, PPM, instrument and target heights
Calculations performed by the General Survey software

HD₁
Horizontal distance between instrument point and target point

VD₁
Vertical distance between instrument point and target point

H₁
Height of instrument

H_T
Height of target

PC
Prism constant

Prism constant correction

The prism constant is applied to all slope distances. It is usually negative, but can be positive.

SD₁ = SD_R + PC
where:

- SD_R measured (raw) slope distance
- SD₁ resultant slope distance
- PC prism constant

PPM correction

The parts per million (PPM) correction is applied to the slope distance after being corrected for the prism constant (see above). PPM depends on pressure and temperature.

\[D_2(P, T) = SD \left[J \cdot \frac{N \cdot P}{273.16 + T} \right] \cdot 10^{-6} \]

where:

- P air pressure in millibars
- T temperature in °C
- J & N constants supplied by the EDM manufacturer

The following table lists some manufacturers of conventional instruments, and the J (RefractiveIndex) and N (CarrierWavelength) constants that the General Survey software uses to compute the PPM correction for those instruments.

<table>
<thead>
<tr>
<th>Manufacturer of conventional instruments</th>
<th>J constant</th>
<th>N constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trimble VX/S/M Series</td>
<td>from instrument</td>
<td>from instrument</td>
</tr>
<tr>
<td>Trimble 5600</td>
<td>274.41</td>
<td>79.39</td>
</tr>
<tr>
<td>Trimble 3300/3600</td>
<td>278.77</td>
<td>80.653</td>
</tr>
<tr>
<td>Trimble TTS300/500</td>
<td>270.0</td>
<td>79.167</td>
</tr>
</tbody>
</table>
Calculations performed by the General Survey software

<table>
<thead>
<tr>
<th>Manufacturer of conventional instruments</th>
<th>J constant</th>
<th>N constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sokkia SET</td>
<td>279.0</td>
<td>79.400</td>
</tr>
<tr>
<td>Topcon</td>
<td>279.7</td>
<td>79.600</td>
</tr>
<tr>
<td>Geotronics 400/600</td>
<td>275.0</td>
<td>79.550</td>
</tr>
<tr>
<td>Leica</td>
<td>282.0</td>
<td>79.400</td>
</tr>
<tr>
<td>Zeiss Elta2/Elta3/Elta4</td>
<td>255.0</td>
<td>79.100</td>
</tr>
<tr>
<td>Zeiss Elta C</td>
<td>281.8</td>
<td>79.391</td>
</tr>
<tr>
<td>Pentax</td>
<td>279.0</td>
<td>79.400</td>
</tr>
<tr>
<td>Nikon</td>
<td>275.0</td>
<td>79.5065</td>
</tr>
</tbody>
</table>

Note –
- The Trimble VX/S/M Series instrument J and N constants that are read from the instrument can be viewed in an exported JobXML file.
- The J constant value is the refractive index of the instrument. The N' constant value is for use with pressure measurements in millibars. In the .dc file, the value is converted to one that can be used with pressure measurements in mmHg.

Curvature and refraction correction

The curvature and refraction correction is applied to vertical angles according to the coefficient of refraction that you set.

\[
VA_3 = VA_2 - \left[\frac{(COnOff - k \times ROnOff) \times SD_1}{2R} \right] \times \frac{180}{\pi}
\]

where:
- **COnOff**: if the **Curvature correction** option is selected, this value is 1; otherwise it is 0
- **ROnOff**: if the **Refraction correction** option is selected, this value is 1; otherwise it is 0
- **k**: coefficient of terrestrial refraction, specified in the **Refraction const.** field on the **Corrections** screen
- **R**: approximate spheroid radius = \(6378137m\) (WGS-84 semi-major axis)
- **SD_1**: slope distance, from equation - **Prism constant correction**
- **VA_2**: vertical angle, from instrument
- **VA_3**: corrected vertical angle
Instrument and target height reduction

The corrected vertical angle (VA_4) from the instrument to the target is:

$$VA_4 = \tan^{-1}\left(\frac{SD_2 \sin VA_3}{SD_2 \cos VA_3 + H_i - H_T}\right)$$

where:

- H_i instrument height
- H_T target height
- SD_2 slope distance
- VA_3 vertical angle, from equation - Curvature and refraction correction
- VA_4 corrected vertical angle

The slope distance from source point to target point (SD_3) is given by the following:

$$SD_3 = \frac{SD_2 \sin VA_3}{\sin VA_4}$$

Face 1/Face 2 determination

This section describes how the General Survey software reduces Face 2 readings to Face 1 readings in order to perform calculations. It does this automatically.

The observed raw vertical angle is used to determine whether an observation is Face 1 or Face 2:

- If the vertical angle is not present the observation is assumed to be Face 1.
- If the vertical angle is in the range 0° to 180°, the observation is Face 1.
- If the vertical angle is in the range 180°-360°, the observation is Face 2.

Orientation correction

To orient circle readings so that they become azimuths, an orientation correction is applied. The orientation correction is the difference between the backsight circle reading and the backsight azimuth. This term is applied to all the other observations (circle readings) at a station.

The formula is:

$$AZ_X = HA_X + (AZ_B - HA_B) \quad \text{(Orientation correction)}$$

where:

- AZ_X azimuth to any point X
- HA_X horizontal observation to any point X
- AZ_B actual backsight azimuth ("reference azimuth")
- HA_B observed backsight circle reading
Slope reduction

The horizontal and vertical components of an observation (HD₁ and VD₁) are found from the vertical angle and slope distances by:

\[HD_1 = SD_3 \sin VA_4 \]
\[VD_1 = SD_3 \cos VA_4 \]

where:
- HD₁ horizontal distance
- VD₁ vertical distance
- VA₄ zenith angle
- SD₃ slope distance

Coordinate calculation

Coordinates of a target point are calculated from observations and the coordinates of the instrument point using:

\[N_2 = N_1 + HD_1 \cos Az_1 \]
\[E_2 = E_1 + HD_1 \sin Az_1 \]
\[Z_2 = Z_1 + VD_1 \]

where:
- N₁, E₁, Z₁ Northing, Easting, Elevation of instrument point
- N₂, E₂, Z₂ Northing, Easting, Elevation of target point
- HD₁ horizontal distance
- VD₁ vertical distance
- Az₁ from equation - Orientation correction.

Mean turned angle calculations

When the software calculates the mean turned angle and the mean distance for a point, it also calculates standard errors as follows:

For the angles, the standard error of the mean of a set of measurements formula is used:

\[\sigma = \frac{\Sigma v^2}{n(n - 1)} \]

For distances, the standard error of the set of measurements formula is used:
Calculations performed by the General Survey software

\[\sigma = \sqrt{\frac{\Sigma v^2}{(n - 1)}} \]

Resection calculation

The resection calculation is a least-squares calculation that uses all available data. Observations to the same point taken on different faces are treated as separate observations. However, the results are the same as those gained from using meaned (averaged) observations. The residuals are given for each point, not each observation. The formula used for the standard errors is as follows:

\[\sigma = \frac{\sqrt{\Sigma v^2}}{(n - 1)} \]

Traverse calculation

This section shows the formulae that the software uses when it calculates a traverse.

Compass adjustment

The Compass adjustment distributes the error in proportion to the length of the traverse lines. The formulae are as follows:

Northing adjustment \[= \frac{D}{\Sigma D} \times \text{Northing misclosure} \]

where:

- \(D \) \hspace{1cm} \text{horizontal distance}
- \(\Sigma D \) \hspace{1cm} \text{sum of the horizontal distances in the traverse}

Easting adjustment \[= \frac{D}{\Sigma D} \times \text{Easting misclosure} \]

where:

- \(D \) \hspace{1cm} \text{horizontal distance}
- \(\Sigma D \) \hspace{1cm} \text{sum of the horizontal distances in the traverse}

Transit adjustment

The Transit adjustment distributes the error in proportion to the northing and easting of each traverse point.

Northing adjustment \[= \frac{\Delta N}{\Sigma \Delta N} \times \text{Northing misclosure} \]
Calculations performed by the General Survey software

where:

\[\Delta N \] change in northing for the traverse line

\[\Sigma \Delta N \] sum of the changes in northings of all the traverse lines

Easting adjustment \(= \frac{\Delta E}{\Sigma \Delta E} \times \) Easting misclosure

where:

\[\Delta E \] change in easting for the traverse line

\[\Sigma \Delta E \] sum of the changes in eastings of all the traverse lines

Angular adjustments

There are three options for distributing the angular error in a traverse:

- Proportional to distance-the error is distributed among the angles based on the sum of the inverses of the forward and back traverse distances for each point. The formula used is as follows:

\[
A_a = \frac{1}{\text{to dist}} + \frac{1}{\text{from dist}} \times A_m
\]

where:

- \(A_a \) Angular adjustment
- \(A_m \) Angular misclosure

- Equal proportions – the error is distributed evenly among the angles in the traverse.
- None – the error is not distributed.

Elevation adjustments

There are three options for distributing the elevation error in a traverse:

- Proportional to distance – the error is distributed in proportion to the length of the traverse line to the point.
- Equal proportions – the error is distributed evenly among the traverse lines.
- None – the error is not distributed.
Standard errors recorded with conventional observations

Each conventional observation that is recorded in the job file has standard errors associated with it. The standard errors that are recorded with the observations are determined as follows:

- For a single observation to a point (for example, Measure topo) the standard error values assigned to the observation are the instrument standard error values (a-priori values). This is because there is nothing else that the standard errors can be determined from.
- If a distance fails to reach the instrument's rated accuracy (typically due to an unstable target), General Survey saves the achieved standard deviation of the measurement. When this occurs, a message tells you that the instrument's distance standard deviation was not achieved for this observation.
- Computed 'observations' for example, Dual prism offsets, Distance offsets, Circular Object and Remote Object measurement methods, the standard errors are recorded as null.

Area calculations

Grid areas
When the Distances field is set to Grid, the area computed is the area at sea level and is calculated using grid coordinates. Elevations are not used in the computation.

Ellipsoid areas
When the Distances field is set to Ellipsoid, the ground area is computed by multiplying the grid area by the projection scale factor (at the centroid of the area) squared.

Ground areas
When the Distances field is set to Ground, the ground area is computed by multiplying the grid area by the combined scale factor (at the centroid of the area) squared.

The combined scale factor (at the centroid of the area) is the point scale factor multiplied by the sea level factor, where, the point scale factor is computed for the centroid of the area based on the current projection definition, and the sea level factor is:

\[
\left(\frac{\overline{h} + R}{R}\right)
\]

So the ground area is:

\[
GA \times \left(PSF \times \left(\frac{\overline{h} + R}{R}\right)\right)^2
\]
Calculations performed by the General Survey software

where:

\[\bar{h} = \frac{\sum h_i}{N} \]

- \(\bar{h} \): average elevation
- \(h_i \): elevation of the \(i \)-th element
- \(N \): number of elements with elevations

Grid area
- \(GA \)

Point scale factor
- \(PSF \)

ellipsoidal radius
- \(R \)
Glossary

This topic explains some of the terms used in this Help.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>accuracy</td>
<td>The closeness of a measurement or coordinate value to the actual (true) or accepted value.</td>
</tr>
<tr>
<td>almanac</td>
<td>Data, transmitted by a GNSS satellite, that includes orbit information on all the satellites, clock correction, and atmospheric delay parameters. The almanac facilitates rapid satellite acquisition. The orbit information is a subset of the ephemeris data with reduced precision.</td>
</tr>
<tr>
<td>Angles and distance</td>
<td>Measurement of horizontal and vertical angles and a slope distance.</td>
</tr>
<tr>
<td>Angles only</td>
<td>Measurement of horizontal and vertical angles.</td>
</tr>
<tr>
<td>annotation</td>
<td>Markings on images for the purpose of clarification.</td>
</tr>
<tr>
<td>Anti-Spoofing (AS)</td>
<td>A feature that allows the U.S. Department of Defense to transmit an encrypted Y-code in place of P-code. Y-code is intended to be useful only to authorized (primarily military) users. Anti-Spoofing is used with Selective Availability to deny the full precision of GNSS to civilian users.</td>
</tr>
<tr>
<td>attribute</td>
<td>A characteristic or property of a feature in a database. All features have a geographic position as an attribute. Other attributes depend on the type of feature. For example, a road has a name or designation number, surface type, width, number of lanes, and so on. Each attribute has a range of possible values, called a domain. The value chosen to describe a particular feature is called the attribute value.</td>
</tr>
<tr>
<td>Autolock</td>
<td>The ability to lock onto and track a target.</td>
</tr>
<tr>
<td>automated rounds</td>
<td>The process of automatically measuring a multiple observations to observed points.</td>
</tr>
<tr>
<td>autonomous positioning</td>
<td>The least precise form of positioning that a GNSS receiver can produce. The position fix is calculated by one receiver from satellite data alone.</td>
</tr>
<tr>
<td>azimuth</td>
<td>Horizontal direction relative to a defined coordinate system.</td>
</tr>
<tr>
<td>Backsight</td>
<td>Point with known coordinates or known azimuth from the instrument point that is used to orientate the instrument during station setup.</td>
</tr>
<tr>
<td>base station</td>
<td>In a GNSS survey, you observe and compute baselines (the position of one receiver relative to another). The base station acts as the position from which all unknown positions are derived. A base station is an antenna and receiver set up</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>on a known location specifically to collect data to be used in differentially correcting rover files.</td>
<td></td>
</tr>
<tr>
<td>baud</td>
<td>A unit of data transfer speed (from one binary digital device to another) used in describing serial communications; generally one bit per second.</td>
</tr>
<tr>
<td>C/A (Coarse Acquisition) code</td>
<td>A pseudorandom noise (PRN) code modulated onto an L1 signal. This code helps the receiver compute the distance from the satellite.</td>
</tr>
<tr>
<td>change face</td>
<td>Turn a servo instrument from the face 1 observing face to face 2.</td>
</tr>
<tr>
<td>CMR</td>
<td>Compact Measurement Record. A satellite measurement message that is broadcast by the base receiver and used by RTK surveys to calculate an accurate baseline vector from the base to the rover.</td>
</tr>
<tr>
<td>constellation</td>
<td>A specific set of satellites used in calculating positions: three satellites for 2D fixes, four satellites for 3D fixes. All satellites visible to a GNSS receiver at one time. The optimum constellation is the constellation with the lowest PDOP. See also PDOP.</td>
</tr>
<tr>
<td>construction offsets</td>
<td>A specified horizontal and/or vertical offset distance to enable equipment to operate without disturbing construction stakes.</td>
</tr>
<tr>
<td>Construction point</td>
<td>A point that is measured using the "quick fix" option in COGO.</td>
</tr>
<tr>
<td>control point</td>
<td>A point on the earth that has an accurately known geographic position.</td>
</tr>
<tr>
<td>conventional survey</td>
<td>In a conventional survey, the controller is connected to a conventional survey instrument such as a total station.</td>
</tr>
<tr>
<td>curvature and refraction</td>
<td>Correction to the measured vertical angle for the curvature of the earth and the refraction caused by the earth's atmosphere.</td>
</tr>
<tr>
<td>data message</td>
<td>A message, included in the GNSS signal, that reports on the location and health of the satellites as well as any clock correction. It includes information about the health of other satellites as well as their approximate position.</td>
</tr>
<tr>
<td>datum</td>
<td>See geodetic datum.</td>
</tr>
<tr>
<td>design code</td>
<td>The code name given to the design point.</td>
</tr>
<tr>
<td>design name</td>
<td>The name given to the design point.</td>
</tr>
<tr>
<td>Differential Positioning</td>
<td>Precise measurement of the relative position of two receivers tracking the same satellites simultaneously.</td>
</tr>
<tr>
<td>Direct Reflex (DR)</td>
<td>Type of EDM that can measure to non reflective targets.</td>
</tr>
<tr>
<td>DOP (Dilution of Precision)</td>
<td>An indicator of the quality of a GNSS position. DOP takes into account the location of each satellite relative to other satellites in the constellation, as well as their</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| geometry relative to the GNSS receiver. A low DOP value indicates a higher probability of accuracy. Standard DOPs for GNSS applications are: | - PDOP - Position (three coordinates)
- GDOP - Geometric (three coordinates and time)
- RDOP - Relative (Position, averaged over time)
- HDOP - Horizontal (two horizontal coordinates)
- VDOP - Vertical (height only)
- TDOP - Time (clock offset only) |
| Doppler shift | The apparent change in frequency of a signal caused by the relative motion of satellites and the receiver. |
| dual-frequency GNSS receiver | GNSS receiver that uses both L1 and L2 signals from GNSS satellites. A dual-frequency receiver can compute more precise position fixes over longer distances and under more adverse conditions because it compensates for ionospheric delays. |
| Dual-prism offset | Measurement of horizontal and vertical angles and a slope distance to two prisms located on one prism pole for the purpose of positioning an obstructed point. |
| Earth-Centered-Earth-Fixed (ECEF) | A cartesian coordinate system used by the WGS-84 reference frame. In this coordinate system, the center of the system is at the earth's center of mass. The z axis is coincident with the mean rotational axis of the earth and the x axis passes through 0° N and 0° E. The y axis is perpendicular to the plane of the x and z axes. |
| eccentric object | Measurement of horizontal and vertical angles and a slope distance to the face of a radial object (for example, power pole). An additional horizontal angle is observed to the side of the object to calculate the radius and thus position the center of the object. |
| EGNOS | European Geostationary Navigation Overlay Service. A satellite-based augmentation system (SBAS) that provides a free-to-air differential correction service for GNSS. |
| elevation | Height above mean sea level. Vertical distance above the geoid. |
| elevation mask | The angle below which Trimble recommends that you do not track satellites. Normally set to 10 degrees to avoid interference from buildings and trees as well as ground multipath errors. |
| ellipsoid | A mathematical model of the earth formed by rotating an ellipse around its minor axis. |
| ephemeris | The current satellite position predictions, transmitted in the data message. |
| epoch | The measurement interval of a GNSS receiver. The epoch varies according to the survey type: - for real-time surveys it is set at one second - for postprocessed |
Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>surveys</td>
<td>It can be set to a rate of between one second and one minute</td>
</tr>
<tr>
<td>Face 1 (F1)</td>
<td>Observing position of an instrument where the vertical circle is commonly on the left hand side of the telescope.</td>
</tr>
<tr>
<td>Face 2 (F2)</td>
<td>Observing position of an instrument where the vertical circle is commonly on the right hand side of the telescope.</td>
</tr>
<tr>
<td>FastStatic survey</td>
<td>A type of GNSS survey. A FastStatic survey is a postprocessed survey using occupations of up to 20 minutes to collect raw GNSS data. The data is postprocessed to achieve sub-centimeter precisions.</td>
</tr>
<tr>
<td>feature</td>
<td>A representation of a real-world object on a map. Features can be represented as points, lines, or polygons. Multipoint features consist of more than one point but only reference one set of attributes in the database.</td>
</tr>
<tr>
<td>feature codes</td>
<td>Simple descriptive words or abbreviations that describe the features of a point. For more information, refer to the Help.</td>
</tr>
<tr>
<td>fixed solution</td>
<td>Indicates that the integer ambiguities have been resolved and a survey is initialized. This is the most precise type of solution.</td>
</tr>
<tr>
<td>float solution</td>
<td>Indicates that the integer ambiguities have not been resolved, and that the survey is not initialized.</td>
</tr>
<tr>
<td>FSTD (fast standard)</td>
<td>The method of measuring one distance and one angle to coordinate a point.</td>
</tr>
<tr>
<td>GAGAN</td>
<td>GPS Aided Geo Augmented Navigation. A regional satellite-based augmentation system (SBAS) currently in development in India.</td>
</tr>
<tr>
<td>Galileo</td>
<td>Galileo is a global navigation satellite system (GNSS) built by the European Union (EU) and European Space Agency (ESA). Galileo is an alternative and complementary GNSS to the U.S. Global Positioning System (GPS), the Russian GLONASS, and the Japanese Quasi-Zenith Satellite (QZSS).</td>
</tr>
<tr>
<td>GDOP</td>
<td>Geometric Dilution of Precision. The relationship between errors in user position and time, and errors in satellite range. See also DOP.</td>
</tr>
<tr>
<td>GENIO</td>
<td>GENeric Input Output file exported by a number of road design software packages that defines a road as a series of strings. See also String.</td>
</tr>
<tr>
<td>geodetic datum</td>
<td>A mathematical model designed to fit part or all of the geoid (the physical earth’s surface).</td>
</tr>
<tr>
<td>geoid</td>
<td>The surface of gravitational equipotential that closely approximates mean sea level.</td>
</tr>
<tr>
<td>GLONASS</td>
<td>GLObal NAvigation Satellite System (GLONASS) is the global navigation satellite system (GNSS) operated for the Russian government by the Russian Space Forces. GLONASS is an alternative and complementary GNSS to the U.S. Global Positioning</td>
</tr>
<tr>
<td>Glossary</td>
<td>Definition</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System (GPS) is the global navigation satellite system (GNSS) operated by the U.S. government. It is an alternative and complementary GNSS to the Global Navigation Satellite System (GLONASS), the European Union Galileo positioning system, and the Japanese Quasi-Zenith Satellite (QZSS).</td>
</tr>
<tr>
<td>GNSS</td>
<td>Global Navigation Satellite System (GNSS). This is the standard generic term for satellite navigation systems that provide geospatial positioning with global coverage.</td>
</tr>
<tr>
<td>GNSS survey</td>
<td>In a GNSS survey, the controller is connected to a GNSS receiver.</td>
</tr>
<tr>
<td>GPS time</td>
<td>A measure of time used by the NAVSTAR GPS system.</td>
</tr>
<tr>
<td>H. Angle offset</td>
<td>Measurement of vertical angle and slope distance. Horizontal angle is then measured separately, usually to an obstructed point.</td>
</tr>
<tr>
<td>H. Angle only</td>
<td>Measurement of horizontal angle.</td>
</tr>
<tr>
<td>HDOP</td>
<td>Horizontal Dilution of Precision. See also DOP.</td>
</tr>
<tr>
<td>Helmert adjustment</td>
<td>The Helmert adjustment provides an alternative method for computing a resection setup. The Helmert adjustment is essentially the same adjustment as that used to compute a horizontal adjustment in a GNSS calibration.</td>
</tr>
<tr>
<td>high dynamic range (HDR)</td>
<td>With high dynamic range turned on, multiple images are captured, each with different exposure settings, each time the camera button is pressed. During HDR processing the images are combined to produce a composite image that has better tonal range and can therefore show more detail than any of the individual images. For images captured using a:</td>
</tr>
<tr>
<td></td>
<td>• V10 imaging rover, HDR processing occurs in the camera head, immediately after image capture.</td>
</tr>
<tr>
<td></td>
<td>• total station that has Trimble VISION technology, HDR processing can be performed in the Trimble Business Center after importing the data.</td>
</tr>
<tr>
<td>horizontal circle</td>
<td>Graduated or digital disc from which the horizontal angle is measured.</td>
</tr>
<tr>
<td>imaging rover</td>
<td>A mobile device containing a camera that is used to capture images. It may contain a GNSS receiver or it may connect to a GNSS receiver or attach to a prism to record its location each time images are captured.</td>
</tr>
<tr>
<td>instrument height</td>
<td>Height of the instrument above the instrument point.</td>
</tr>
<tr>
<td>instrument point</td>
<td>Point that the instrument is occupying.</td>
</tr>
<tr>
<td>integer</td>
<td>The whole number of cycles in a carrier phase pseudorange between the GNSS</td>
</tr>
</tbody>
</table>
Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ambiguity</td>
<td>satellite and the GNSS receiver.</td>
</tr>
<tr>
<td>integrated survey</td>
<td>In an integrated survey, the controller is connected to both a conventional survey instrument and a GNSS receiver at the same time. The General Survey software can quickly switch between the two instruments, within the same job.</td>
</tr>
<tr>
<td>ionosphere</td>
<td>The band of charged particles 80 to 120 miles above the earth's surface. The ionosphere affects the accuracy of GNSS measurements if you measure long baselines using single-frequency receivers.</td>
</tr>
<tr>
<td>K factor</td>
<td>The K factor is a constant defining a vertical curve in a road definition. K = L/A. where: L is the length of the curve A is the algebraic difference between the incoming and outgoing slopes in %</td>
</tr>
<tr>
<td>L1</td>
<td>The primary L-band carrier used by GNSS satellites to transmit satellite data.</td>
</tr>
<tr>
<td>L2</td>
<td>The secondary L-band carrier used by GNSS satellites to transmit satellite data. Block IIR-M and later GPS satellites will transmit an additional signal on L2 called L2c.</td>
</tr>
<tr>
<td>L5</td>
<td>The third L-band carrier used by GNSS satellites to transmit satellite data. This has been added to Block IIF and later GPS satellites.</td>
</tr>
</tbody>
</table>
| measurement modes: | **Standard (STD), Fast Standard (FSTD), Tracking (TRK)**
Angles are measured and averaged as one distances is measured. STD mode is indicated by an S next to the instrument icon on the status bar. One angle and one distance are measured. FSTD mode is indicated by an F next to the instrument icon on the status bar. Angles and distances are continually measured. TRK mode is indicated by a T next to the instrument icon on the status bar. |
| MGRS | Military Grid Reference System |
| MSAS | MTSAT Satellite-Based Augmentation System. A satellite-based augmentation system (SBAS) that provides a free-to-air differential correction service for GNSS over its coverage area, which is Japan. |
| multipath | Interference, similar to ghosting on a television screen. Multipath occurs when GNSS signals traverse different paths before arriving at the antenna. |
| Neighborhood Adjustment| A coordinate adjustment that is applied to conventional surveys with multiple backsights or jobs with a GNSS site calibration. During station setup plus, resection or GNSS site calibration, residuals are calculated for each observed control point. The calculated distances from each new point to the control points used in the station setup or calibration are used to determine the coordinate adjustment to be applied to the new point. |
| NMEA | A standard, established by the National Marine Electronics Association (NMEA), |

Trimble Access General Survey help 594
<table>
<thead>
<tr>
<th>Glossary</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>that defines electrical signals, data transmission protocol, timing, and sentence formats for communicating navigation data between marine navigation instruments.</td>
<td>NTRIP Networked Transport of RTCM via Internet Protocol</td>
</tr>
<tr>
<td>A measurement made at or between control points using surveying equipment, including GNSS receivers and conventional instruments.</td>
<td>observation</td>
</tr>
<tr>
<td>A satellite-based system that broadcasts GPS correction information.</td>
<td>OmniSTAR</td>
</tr>
<tr>
<td>The `precise' code transmitted by the GPS satellites. Each satellite has a unique code that is modulated onto both the L1 and L2 carrier waves.</td>
<td>P-code</td>
</tr>
<tr>
<td>A form of error checking used in binary digital data storage and transfer. Options for parity checking include Even, Odd, or None.</td>
<td>parity</td>
</tr>
<tr>
<td>Position Dilution of Precision, a unitless figure of merit expressing the relationship between the error in user position and the error in satellite position.</td>
<td>PDOP</td>
</tr>
<tr>
<td>The highest PDOP value at which a receiver will compute positions.</td>
<td>PDOP mask</td>
</tr>
<tr>
<td>A photo station is created each time a photo or set of photos is captured using an imaging rover. A photo station defines a point and includes coordinate data, image(s), and any applicable raw sensor values.</td>
<td>photo station</td>
</tr>
<tr>
<td>A collection of data points in 3D space.</td>
<td>point cloud</td>
</tr>
<tr>
<td>A system of instrumental and computational components for determining geographic position.</td>
<td>positioning system</td>
</tr>
<tr>
<td>To process satellite data on a computer after it has been collected.</td>
<td>postprocess</td>
</tr>
<tr>
<td>A type of GNSS survey. Postprocessed kinematic surveys store raw stop-and-go and continuous observations. The data is postprocessed to achieve centimeter-level precisions.</td>
<td>postprocessed kinematic survey</td>
</tr>
<tr>
<td>Parts per million correction that is applied to measured slope distances to correct for the affects of the earth’s atmosphere. PPM is determined using observed pressure and temperature readings together with specific instrument constants.</td>
<td>PPM</td>
</tr>
<tr>
<td>A measure of how closely random variables tend to cluster around a computed value, which indicates the repeatability of one or a set of measurements.</td>
<td>precision</td>
</tr>
<tr>
<td>Distance offset between the center of a prism and the point being measured.</td>
<td>Prism constant</td>
</tr>
<tr>
<td>Used to create flat maps that represent the surface of the earth or parts of that surface.</td>
<td>projection</td>
</tr>
<tr>
<td>Quasi-Zenith Satellite (QZSS) is a Japanese based satellite system built by the Japan Aerospace Exploration Agency (JAXA). QZSS is a complementary GNSS to the U.S.</td>
<td>QZSS</td>
</tr>
</tbody>
</table>
Glossary

Global Positioning System (GPS), the Russian GLONASS, and the European Union Galileo positioning system. QZSS is also a satellite-based augmentation system (SBAS).

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDOP</td>
<td>Relative Dilution of Precision. See also DOP.</td>
</tr>
<tr>
<td>real-time differential survey</td>
<td>A type of GNSS survey. A real-time differential survey uses the differential corrections transmitted from a land-based receiver or from SBAS or OmniSTAR satellites to achieve sub-meter positioning at the rover.</td>
</tr>
<tr>
<td>real-time kinematic and data logging survey</td>
<td>A type of GNSS survey. A real-time kinematic and data logging survey records raw GNSS data during an RTK survey. The raw data can be postprocessed later, if required.</td>
</tr>
<tr>
<td>real-time kinematic and infill survey</td>
<td>A type of GNSS survey. A real-time kinematic and infill survey allows you to continue a kinematic survey when radio contact with the base station is lost. The infill data must be postprocessed.</td>
</tr>
<tr>
<td>reference station</td>
<td>See base station.</td>
</tr>
<tr>
<td>reline</td>
<td>The process of establishing the position of an occupied point relative to a baseline by taking measurements to two known or unknown points.</td>
</tr>
<tr>
<td>resection</td>
<td>The process of establishing the position of an occupied point by taking measurements to two or more known points.</td>
</tr>
<tr>
<td>RMS</td>
<td>Root Mean Square. This is used to express the accuracy of point measurement. It is the radius of the error circle within which approximately 70% of position fixes are to be found.</td>
</tr>
<tr>
<td>RMT</td>
<td>Remote target rounds</td>
</tr>
<tr>
<td>rover</td>
<td>Any mobile GNSS receiver and field computer collecting data in the field. The position of a roving receiver can be differentially corrected relative to a stationary base GNSS receiver.</td>
</tr>
<tr>
<td>RTCM</td>
<td>Radio Technical Commission for Maritime Services. This is a commission that was established to define a differential data link for the real-time differential correction of roving GNSS receivers. There are two types of RTCM differential correction messages, but all Trimble GNSS receivers use the newer Type 2 or Type 3 RTCM protocol.</td>
</tr>
<tr>
<td>RTK</td>
<td>Real-time kinematic, a type of GNSS survey.</td>
</tr>
<tr>
<td>SBAS</td>
<td>Satellite Based Augmentation System. SBAS is based on differential GNSS, but applies to wide area networks of reference stations (for example, WAAS, EGNOS, Trimble Access General Survey help</td>
</tr>
</tbody>
</table>
Glossary

MSAS. Corrections and additional information are broadcast using geostationary satellites.

single-frequency
A type of receiver that only uses the L1 GNSS signal. There is no compensation for ionospheric effects.

Single dist. Offset
Measurement of horizontal and vertical angles and a slope distance. Plus additional offset distances to position obstructed points.

SNR
Signal-to-Noise Ratio, a measure of the strength of a satellite signal. SNR ranges from 0 (no signal) to 99, where 99 is perfect and 0 means the satellite is not available. A typical good value is 40. A GNSS system typically starts using a satellite when its SNR value is higher than 25.

Station
The distance or interval along a line, arc, alignment, road, or tunnel.

Station setup
The process of defining the instrument occupation point and setting the orientation of the instrument to a backsight point or points.

String
A string is a series of 3D points joined together. Each string represents a single feature such as a curb line or the centerline of a road.

SV
Satellite Vehicle (or Space Vehicle).

target height
Height of prism above the point being measured.

TDOP
Time Dilution of Precision. See also [DOP](#).

TOW
Time of Week in seconds, from midnight Saturday night/Sunday morning GPS time.

tracking
The process of receiving and recognizing signals from a satellite.

Tracklight
A visible light that guides the prism operator on the correct bearing.

TRK
Tracking mode. Used to measure towards moving targets.

USNG
United States National Grid

UTC
Universal Time Coordinated. A time standard based on local solar mean time at the Greenwich meridian. See also GPS time.

VBS
Virtual Base Station

VDOP
Vertical Dilution of Precision. See also [DOP](#).

vertical circle
Graduated or digital disc from which the vertical angle is measured.

VPI
Vertical Point of Intersection

WAAS
Wide Area Augmentation System. A satellite-based augmentation system (SBAS) that improves the accuracy and availability of the basic GNSS signals over its coverage area, which includes the continental United States and outlying parts of Canada and Mexico.
<table>
<thead>
<tr>
<th>Glossary</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight exponent</td>
<td>The Weight exponent is used in the Neighborhood adjustment calculation. When the coordinate adjustment to be applied to a new point is calculated, the calculated distances from each new point to the control points used in the station setup are weighted according to the Weight exponent.</td>
</tr>
<tr>
<td>WGS-84</td>
<td>World Geodetic System (1984), the mathematical ellipsoid used by GPS since January 1987. See also ellipsoid.</td>
</tr>
<tr>
<td>Y-code</td>
<td>An encrypted form of the information contained in the Pcode. Satellites transmit Y-code in place of Pcode when Anti-Spoofing is in effect.</td>
</tr>
</tbody>
</table>